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Abstract

Given a large dataset of images, we seek to automati-

cally determine the visually similar object and scene classes

together with their image segmentation. To achieve this we

combine two ideas: (i) that a set of segmented objects can

be partitioned into visual object classes using topic discov-

ery models from statistical text analysis; and (ii) that vi-

sual object classes can be used to assess the accuracy of a

segmentation. To tie these ideas together we compute mul-

tiple segmentations of each image and then: (i) learn the

object classes; and (ii) choose the correct segmentations.

We demonstrate that such an algorithm succeeds in auto-

matically discovering many familiar objects in a variety of

image datasets, including those from Caltech, MSRC and

LabelMe.

1. Introduction

In [21] we posed the question, given a (Gargantuan)

number of images, “Is it possible to learn visual object

classes simply from looking at images?”. That is, if our

data set contains many instances of (visually similar) object

classes, can we discover these object classes? In this paper

we extend this question to “Is it possible to learn visual ob-

ject classes and their segmentations simply from looking at

images?”

To automatically discover objects in an image collection,

two very challenging issues must be addressed: (i) how to

recognize visually similar objects; and (ii) how to segment

them from their background. But, in a sense, both object

recognition and image segmentation can be thought of as

parts of one large grouping problem within the space of an

entire dataset. Given a stack of all images in the dataset,

groups representing similar objects can be seen as volumes

in that stack. Projecting such volumes onto a particular im-

age gives segmentation; projecting onto the image index

gives recognition. Our aim here is to couple object-based

matching/recognition and image-based segmentation into a

general grouping framework.

To be concrete, the problem that we wish to solve is

the following: given a large dataset of images (containing

multiple instances of several object classes), retrieve seg-

mented instances grouped into object classes. The hope is

that this will recover commonly occurring object classes in

the dataset (e.g. cars, buildings). Our approach is to first ob-

tain multiple segmentations of each image, and to make the

assumption that each object instance is correctly segmented

by at least one segmentation. The problem is then reduced

to finding coherent groups of correctly segmented objects

within this large “soup” of candidate segments, i.e. one of

grouping in the space of candidate image segments. Our

approach is illustrated in figure 1.

1.1. Background

Several researchers have proposed mining large visual

datasets to cluster multiple instances of objects. Examples

include discovering main characters [10] and other promi-

nent objects and scenes [23] in movies or mining famous

people in collections of news photographs [1]. Recently,

some success has also been reported in discovering object

and scene categories [7, 17, 21] by borrowing tools from

the statistical text analysis community. These tools, such

as probabilistic Latent Semantic Analysis (pLSA) [12] and

Latent Dirichlet Allocation (LDA) [2], use unordered “bag

of words” representation of documents to automatically dis-

cover topics in a large text corpus. To map these techniques

onto the visual domain, an equivalent notion of a text word

needs to be defined. Most researchers follow the approach

of using clustered affine-invariant point descriptors as “vi-

sual words” [5, 22]. Under this model, images are treated

as documents, with each image being represented by a his-

togram of visual words. Applying topic discovery to such

a representation is successful in classifying the image, but

the resulting object segmentations are “soft” – the discov-

ered objects (or scenes) are shown by highlighting the visual
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Figure 1. Problem summary. Given a set of input images (first column), we wish to discover object categories and infer their spatial extent

(e.g. cars and buildings: final two columns). We compute multiple segmentations per image (a subset is depicted in the second through

fifth columns; all of the segmentations for the first row are shown in Figure 4). The task is to sift the good segments from the bad ones for

each discovered object category. Here, the segments chosen by our method are shown in green (buildings) and yellow (cars).

words in the image belonging to a particular topic.

One major issue noticed by several groups [17, 21], is

that the “visual words” are not always as descriptive as

their text counterparts. While some visual words do cap-

ture high-level object parts, (e.g. wheels, eyes, airplane

wingtips), many others end up encoding simple oriented

bars and corners and might more appropriately be called

“visual phonemes” or even “visual letters”. Consequently,

there is a proportion of visual synonyms – several words

describing the same object or object part, and, more prob-

lematically, visual polysemy – the same word describing

several different objects or object parts. All this means that

the statistical text methods alone are sometimes not power-

ful enough to deal with the visual data. This is not too sur-

prising – after all, the visual world is much richer and nois-

ier than the human-constructed, virtually noiseless world of

text.

1.2. Grouping visual words

The problem of visual polysemy becomes apparent when

we consider how an image is represented in the “bag of

words” document model. All visual words in an image are

placed into a single histogram, losing all spatial and neigh-

borhood relationships. Suppose a car is described by ten

visual words. Does the presence of these ten words in an

image imply that it contains a car? Not necessarily, since

these ten words did not have to occur together spatially,

but anywhere in the image. Of course, if the object and

its background are highly correlated (e.g. cars and roads or

cows and grass), then modeling the entire image can actu-

ally help recognition. However, this is unlikely to scale as

we look at a large number of object classes. Therefore, what

we need is a way to group visual words spatially [8, 24] to

make them more descriptive.

1.3. Multiple segmentation approach

In this paper we propose to use image segmentation as a

way to utilize visual grouping cues to produce groups of

related visual words. In theory, the idea sounds simple:

compute a segmentation of each image so that each seg-

ment corresponds to a coherent object. Then cluster sim-

ilar segments together using the “bag of words” represen-

tation. However, image segmentation is not a solved prob-

lem. It is naive to expect a segmentation algorithm to par-

tition an image into its constituent objects – in the general

case, you need to have solved the recognition problem al-

ready! In practice, some approaches, like Mean-shift [4],

perform only a low-level over-segmentation of the image

(superpixels). Others, like Normalized Cuts [20] attempt to

find a global solution, but often without success (however,

see Duygulu et al. [6] for a clever joint use of segments and

textual annotations).

Recently, Hoiem et al. [13] have proposed a surprisingly

effective way of utilizing image segmentation without suf-

fering from its shortcomings. For each image, they com-

pute multiple segmentations by varying the parameters of

the segmenting algorithm. Each of the resulting segmenta-

tions is still assumed to be wrong – but the hope is that some

segments in some of the segmentations will be correct. For

example, consider the images in figures 1 and 4. None of

the segmentations are entirely correct, but most objects get

segmented correctly at least once. This idea of maintaining

multiple segmentations until further evidence can be used

to disambiguate is similar to the approach of Borenstein et

al. [3].

The problem now becomes one of going through a large

“soup” of (overlapping) segments and trying to discover the

good ones. But note that, in a large image dataset with many

examples of the same object, the good segments (i.e. the

ones containing the object) will all be represented by a simi-

lar set of visual words. The bad segments, on the other hand,

will be described by a random mixture of object-words and

background-words. To paraphrase Leo Tolstoy [25]: all

good segments are alike, each bad segment is bad in its own

way. This is the main insight of the paper: segments cor-



Given a large, unlabeled collection of images:

1. For each image in the collection, compute multiple candi-

date segmentations, e.g. using Normalized Cuts [20] (sec-

tion 2.1).

2. For each segment in each segmentation, compute a his-

togram of “visual words” [22] (section 2.2).

3. Perform topic discovery on the set of all segments in the

image collection (using Latent Dirichlet Allocation [2]),

treating each segment as a document (section 2.3).

4. For each discovered topic, sort all segments by how well

they are explained by this topic (section 2.4).

Figure 2. Algorithm overview.

responding to objects will be exactly the ones represented

by coherent groups (topics), whereas segments overlapping

object boundaries will need to be explained by a mixture of

several groups (topics). We exploit this insight in the object

discovery algorithm described next.

2. The Algorithm

Given a large, unlabeled collection of images, our goal

is to automatically discover object categories with the ob-

jects segmented out from the background. Our algorithm is

summarized in figure 2.

The result is a set of discovered topics, where the

top-ranked discovered segments correspond to the objects

within that topic. The rest of the section will describe the

steps of the algorithm in detail.

2.1. Generating multiple segmentations

Our aim is to produce sufficient segmentations of each

input image to have a high chance of obtaining a few “good”

segments that will contain potential objects. There are

approaches in the literature for sampling likely segmenta-

tions [26] and multiscale segmentations [19]. But since we

are not relying on the full segmentation to be correct, the

particular choice of a segmentation algorithm is not that

critical. Indeed, the fact that segmentation algorithms are

not particularly stable as one perturbs their parameters is

exactly what we use to obtain a variety of different segmen-

tations.

We have chosen the Normalized Cuts framework [20],

because it aims to produce a global segmentation with large

segments that have a chance to be objects. The affinity

metric we use is the intervening contour cue based on the

texture-suppressing boundary detector of Martin et al. [16].

To produce multiple segmentations, we varied two param-

eters of the algorithm: the number of segments K and the

size of the input image. We typically set K = 3, 5, 7, 9 seg-

ments and applied these settings at 2 image scales: 50- and

100-pixels across (for the LabelMe dataset, we also used

K = 11, 13 and for the MSRC dataset we added a third

scale at 150-pixels across). This results in up to 12 different

segmentations per image, for a total of up to 96 (overlap-

ping) segments. Figure 4 shows the set of resulting seg-

mentations for sample images.

2.2. Obtaining visual words

The goal is to develop a description of an image segment

which would have tolerance to intra-class variations and a

certain degree of viewpoint and lighting changes. Due to

imperfections in segmentation the representation should be

also tolerant to some amount of partial occlusion and clutter,

e.g. a segment containing a ‘car’ might have a roof missing

and/or include a part of the road.

We follow the approach of [21] and represent images us-

ing affine covariant regions, described by SIFT [15] descrip-

tors and quantized into approximately 2,000 visual words.

The regions are computed using binaries provided at [14].

The quantization is performed by k-means clustering of re-

gions from 1,861 images of cars, faces, motorbikes, air-

planes and backgrounds from the Caltech dataset [9]. Note

that the same cluster centers (visual words) are used for all

experiments in this paper.

Once the visual words are computed for an image, each

image segment is represented by a histogram of visual

words contained within the segment (the bag of words

model).

2.3. The topic discovery models

We review the topic discovery models from statisti-

cal text analysis, Probabilistic Latent Semantic Analysis

(pLSA) and Latent Dirichlet Allocation (LDA), which we

apply here in the visual domain. The goal is to analyze the

collection of segments and discover ‘topics’, which should

correspond to visually similar objects frequently occurring

in the data.

We will describe the models using the original terms

‘documents’ and ‘words’ as used in the text literature. In

our case, documents correspond to image segments (sec-

tion 2.1) and words correspond to quantized affine covariant

regions (section 2.2).

Suppose we have N documents containing words from

a vocabulary of size M . The corpus of text documents is

summarized in a M by N co-occurrence table N, where

n(wi, dj) stores the number of occurrences of a word wi

in document dj . In addition, there is a hidden (latent) topic

variable zk associated with each occurrence of a word wi in

a document dj .

The joint probability P (wi, dj , zk) is assumed to have

the form of the graphical model shown in figure 3(a).

Marginalizing over topics zk determines the conditional

probability P (wi|dj):

P (wi|dj) =
K∑

k=1

P (zk|dj)P (wi|zk), (1)
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Figure 3. (a) pLSA graphical model, see text. Nodes inside a given box (plate notation) indicate that they are replicated the number of

times indicated in the top left corner. Filled circles indicate observed random variables; unfilled are unobserved. (b) In pLSA the goal is to

find the topic specific word distributions P (w|zk) and corresponding document specific mixing proportions P (z|dj) which make up the

document specific word distribution P (w|dj). (c) LDA graphical model.

where P (zk|dj) is the probability of topic zk occurring in

document dj ; and P (wi|zk) is the probability of word wi

occurring in a particular topic zk.

The model (1) expresses each document as a convex

combination of K topic vectors. This amounts to a matrix

decomposition as shown in figure 3(b) with the constraint

that both the vectors and mixture coefficients are normal-

ized to make them probability distributions. Essentially,

each document is modeled as a mixture of topics – the his-

togram for a particular document being composed from a

mixture of the histograms corresponding to each topic.

In contrast to pLSA, LDA treats the multinomial weights

P (z|d) over topics as latent random variables. The pLSA

model is extended by sampling those weights from a Dirich-

let distribution, the conjugate prior to the multinomial dis-

tribution. This extension allows the model to assign prob-

abilities to data outside the training corpus and uses fewer

parameters, thus reducing overfitting (see [2] for a detailed

comparison). The LDA model is shown in Figure 3(c),

where Wd is the number of words in document d. The goal

is to maximize the following likelihood:

p(w|φ, α, β) =

∫ ∑
z

p(w|z, φ)p(z|θ)p(θ|α)p(φ|β)dθ

(2)

where θ and φ are multinomial parameters over the topics

and words respectively and p(θ|α) and p(φ|β) are Dirichlet

distributions parameterized by the hyperparameters α and

β. Since the integral is intractable to solve directly, we solve

for the φ parameters using Gibbs sampling, as described

in [11]. We ran the Gibbs sampler for 100 iterations, which

converged on a Pentium 2.2 GHz machine in under 2 hours

on the MSRC dataset with approximately 200K segments.

The hyperparameters control the mixing of the multino-

mial weights (lower values give less mixing) and can pre-

vent degeneracy. As in [11], we specialize to scalar hy-

perparameters (e.g. αi = a ∀ i). For this paper, we used

αi = 0.5 and βj = 0.5.

2.4. Sorting the soup of segments

We wish to find good segments within each topic. We

sort the segments by the similarity of the visual word

distribution (normalized histogram) within each segment

to the learned multinomial weights φt for a given topic

t. Let φs be the multinomial parameter describing the

visual word distribution within a segment. We sort the

segments based on the Kullback-Leibler (KL) divergence

D(p(w|s, φs)||p(w|z, φt)) between the two distributions

over visual words.

Figure 4 shows discovered objects segmented out of the

image. We also show the generated multiple segmentations

and have weighted each segment based on their KL diver-

gence score. Notice that often there is a tight segmentation

of the discovered objects.

3. Results

In this section, we show qualitative results on several

datasets and report quantitative results on two tasks: (i) the

retrieval task, where we wish to evaluate whether or not the

top ranked images for a particular topic contain the discov-

ered object; and (ii) the segmentation task, where we wish

to evaluate the quality of object segmentation and the pro-

portion of well-segmented highly-ranked objects.

Image datasets: We investigated three datasets: Cal-

tech [9], MSRC [27], and LabelMe [18]. A summary of

the object categories and number of images used appears in

table 1. We tested on progressively more difficult datasets.

For the Caltech set, we used four object categories – the

‘Caltech four’ of [9] – each containing a single instance ap-

pearing in flat or cluttered background, and a set of back-

ground images. The MSRC set contains 23 object and

scene categories. Many of the objects in this set are promi-

nently featured and located close to the center of the im-

age. There are also many images containing multiple ob-

jects, with some that are occluded. The LabelMe dataset is

a more difficult collection of scene images where the ob-

jects are not controlled and appear in their natural habitat.

For this set, we queried for images containing cars, trees,

and buildings. The query resulted in 1554 images, contain-

ing many other additional objects.

Figures 5-7 show montages of segments for each topic,

sorted by their KL divergence score. Note that for each dis-

covered category, the objects are reasonably segmented and

are consistent. The depicted segments each come from a



Figure 4. How multiple candidate segmentations are used for object discovery. The top left image of every pair of rows is the input image,

which is segmented using Ncuts at different parameter settings into 12 different sets of candidate regions. The explanatory power of each

candidate region is evaluated as described in the text; we illustrate the resulting rank by the brightness of each region. The image data of

the top-ranked candidate region is shown in the bottom left, confirming that the top-ranked regions usually correspond to objects.

different image to avoid showing multiple segments of the

same object.

To assess the contributions of the different steps of the

algorithm, we evaluate: (a) the proposed algorithm (of fig-

ure 2), (b) swapping the LDA model for the simpler pLSA

model to evaluate the contribution of the Dirichlet prior over

the multinomial weights, (c) using only a single segmenta-

tion for each image (in conjunction with the LDA model) to

evaluate the contribution of computing multiple segmenta-

tions for each image, (d) our previous method [21], where

we use no segmentation at all and each image is treated as

a separate document, with the object extent determined by

the union of visual words having high posterior probability

(greater than 0.5) for a particular topic. For all tests, each

method was run 10 times and the run with the highest like-

lihood was used.

Image retrieval performance is evaluated on the MSRC

database, where labels indicating object presence/absence

are available. The evaluation is performed for four objects:

‘bicycles’, ‘cars’, ‘signs’ and ‘windows’. For the proposed

method (a), top ranked images for corresponding topics are

shown in figure 7. Precision-recall curves were computed

and the average precision is reported in table 2 for the tested

methods.

For ‘bicycles’ and ‘windows’, the proposed method per-

forms on par or better than the other methods. Method (d),

where no segmentation is used, performs best on ‘cars’ be-

cause it is learning about other objects in the scene that over-

lap significantly with the target object (e.g. roads). These

other objects predict well the presence and location of the

target object for the tested dataset. This effect may also ex-

plain why method (c), which uses a coarse segmentation,

performs better on ‘signs’. Method (b) performs signifi-

cantly worse than the other methods. We believe this is due

to pLSA overfitting the data, because of the lack of a Dirich-

let prior on the document-topic coefficients [2]. In our ear-

lier work [21], we did not observe a significant difference

in performance between pLSA and LDA. This might be due

to the smaller number of topics and documents used. Our

earlier work had only about 4K documents and 4-7 topics,

whereas in this work we have about 200K documents and

25 topics.



Dataset # of images # of categories

Caltech [9] 4,090 4 + background

MSRC [27] 4,325 23 object and scene categories

LabelMe [18] 1,554 cars, buildings, trees

Table 1. Summary of datasets used in this paper.

Method bicycles cars signs windows

(a) Mult. seg. LDA 0.69 0.77 0.43 0.74

(b) Mult. seg. pLSA 0.67 0.28 0.34 0.57

(c) Sing. seg. LDA 0.67 0.73 0.46 0.72

(d) No seg. LDA 0.64 0.85 0.40 0.74

(e) Chance 0.06 0.12 0.04 0.15

Table 2. Average precisions for the tested methods on several ob-

jects from the MSRC dataset.

Method buildings cars roads sky

(a) Mult. seg. LDA 0.53 0.21 0.41 0.77

(b) Mult. seg. pLSA 0.59 0.09 0.16 0.77

(c) Sing. seg. LDA 0.55 0.29 0.32 0.65

(d) No. seg. LDA 0.47 0.16 0.14 0.16

Table 3. Segmentation score for the tested methods on several ob-

jects with ground truth labels from the LabelMe dataset. See text

for a description of the segmentation score.

The segmentation accuracy is evaluated on the LabelMe

dataset, where ground truth object segmentation was la-

belled for each tested method on the top twenty returned

images for topics covering four objects: ‘buildings’, ‘cars’,

‘roads’ and ‘sky’. Let R and GT be respectively the set of

pixels in the retrieved object segment and the ground truth

segmentation of the object. The performance score ρ mea-

sures the area correctly segmented by the retrieved object

segment. It is the ratio of the intersection of GT and R to

the union of GT and R, i.e. ρ = GT∩R
GT∪R

. If more than one

ground truth segmentation intersects R, then we use the one

that results in the highest score. The score is then averaged

over the top 20 retrieved object segments. The results are

summarized in table 3.

Our method scores about the same or better than the

other methods on ‘roads’ and ‘sky’ objects. Methods (b)

and (c) perform better on ‘building’ and ‘car’ objects re-

spectively. Note that this comparison takes into account

only the top 20 segments for each method and does not

measure the number of top-ranked high quality segments.

For the ‘car’ object, we have closely inspected the results

of methods (a) and (c). While the quality of segmenta-

tions is worse in the top 20 returned images, the proposed

method (a) outperforms single segmentation LDA (c) over

the top 500 returned images (the proposed method returns

about 15% more high quality segments). This suggests that

using multiple segmentations generates more high quality

segments in the dataset.

4. Conclusion

By combining multiple candidate segmentations with

probabilistic document analysis methods, we have devel-

oped an algorithm that finds and segments visual topics

within an unlabeled collection of images. The discovered

topics relate closely to object classes within the training set,

such as cars, bicycles, faces, signs, trees, and windows. (In

comparison with the recent results of Winn et al. [28], we

should note that ours are obtained completely automatically

from a large corpus of unlabeled images, whereas theirs are

computed from a small set of single-object-category im-

ages.) These results show the power of classical segmen-

tation methods augmented with the power of modern docu-

ment analysis methods.
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