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Abstract—Central to the development of computer vision
systems is the collection and use of annotated images spangi
our visual world. Annotations may include information about
the identity, spatial extent, and viewpoint of the objects pesent
in a depicted scene. Such a database is useful for the trairdn
and evaluation of computer vision systems. Motivated by the
availability of images on the Internet, we introduced a web-
based annotation tool that allows online users to label objs
and their spatial extent in images. To date, we have colleale
over 400K annotations that span a variety of different scenand
object classes. In this paper, we show the contents of the ddtase,
its growth over time, and statistics of its usage. In additio, we
explore and survey applications of the database in the areasf
computer vision and computer graphics. Particularly, we stow

variety of scenes using only the user-provided object annations. T
The output 3D information is comparable to the quality produced ¢
by a laser range scanner. We also characterize the space of i . .
the images in the database by analyzing (i) statistics of theo- Fig. 1. The entire dataset from an early vision paper [36]e Bhiginal

. . f " caption illustrates the technical difficulties of imageitizgtion in the 1970s:
Ic;(;%uurtreor;ctieolfalbaer%% ?rg{ae gcéi_ in the images and (i) the spatia “(a) and (b) were taken with a considerably modified Inforigratnternational

Incorporated Vidissector, and the rest were taken with @riation TMC-

Index Terms—online annotation tool, image database, object 2100 vidicon camera attached to a Spatial Data SystemszdigifCamera
recognition, object detection, 3D, video annotation, imag statis- Y 108):" quote from [37]
tics

l. INTRODUCTION dataset of annotated images with many objects still caretit

a costly and lengthy endeavor. Traditionally, datasetdaile

I N the early days of computer vision research, the firg{; jndividual research groups and are tailored to solveifipec
challenge a computer vision researcher would encounippjems. Therefore, many currently available datases irs
would be the difficult task of digitizing a photograph [25]computer vision only contain a small number of object classe
Figure 1 shows the complete image collection used for theq reliable detectors exist for a few of themg, human
study presented in [37] and illustrates the technical diffies 5005 and cars [75], [47], [54], [74]). Notable recent exizeys
existing in the 70’s to capture digital images. Even oncé&it 56 the Caltech 101 dataset [14], with 101 object classes
picture in digital form, storing a large number of pictureay (later extended to 256 object classes [18]), ImageNet [8],
SiX) consume_d most of the available compu_tational resGuUrCghe PASCAL collection [11] containing 20 object classes,
Today, having access to large datasets is fundamental fQg CBCL-street scenes database [5], comprising 8 object
computer vision. Small datasets have the risk of over{§ttinateqories in street scenes, and the database of scenethérom
by encouraging approaches that work only on a few selectegs Hill Research Institute [82]. For a review and disiuiss
cases. Moreover, it is hard to evaluate progress in the figfd Wof cyrrent data sets we refer to [41]. The goal of LabelMe is to
small datasets. This is specially relevant in the case @abj proyide a large variety of images with many annotated object
recognition, where it is important to test the ability of ateb  ayajlable datasets in computer vision have focused onrggtti
to detect and recognize objects under a variety of conditiognnotated data for a set of predefined object categories [11]

(different backgrounds, illuminations, occlusions, areses). [5] or in collecting images of one or few prominent objects
For this, we require access to large collections of anndtatg 4] [1g].

'mages covering the V.a”ab'“ty of the wsua! world. . Creating a large number of annotations for thousands of
The availability of visual data has experienced a dramaté‘fﬁerent object classes can become a time-consuming and

change in the last decade, especially via the Internet, hNhiEhallenging process. To cope with the difficulty of creating

has_ given researchers access to biIIions of imaggs_ and&idefgrge annotated dataset, there have been several works tha
While large volumes of pictures are available, buildingrgéa study methods for optimizing labeling tasks. For example,
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B.C. Russell is with INRIA, WILLOW project-team, Laboratei d be foll db isted lidati 761, A
d’Informatique de IEcole Normale Supérieure ENS/INRIA/CNRS umran € followe y a user-assisted validation stage [ ] n

8548, Paris, France e-mail: russell@di.ens.fr. implementation of this idea is the Seville project [1], whan



Lt PPE Q 7 @ o e

Help _ Make 30 Upload imay

yyyyyy

Fig. 2. Snapshot of the online application for image animtat

incremental, boosting-based detector was trained. Thedipé

provide location information of objects. Recently, a humdie
collection efforts have used online services such as Mechhn
Turk [62] to distribute the annotation task to a large popafa
of Internet users.

In 2005 we created LabelMe [51], an online annotation tool
that allows sharing and labeling of images for computeiowisi
research. The application exploits the capacity of the veeb t
concentrate the efforts of a large population of users. The
tool has been online since August 2005 and has accumulated
over 400,000 annotated objects. The online tool provides
functionalities for drawing polygons to outline the sphtia
extent of object in images, querying for object annotations
and browsing the database (see Fig. 2).

In this paper we describe the evolution of both LabelMe
and its annotation corpus. We demonstrate statisticsataiigl
the ease of use and impact our system has had over the course
of time. With the aid of collaborative collection and lateji
of scenes at a large scale, we visualize a two-dimensional

begins by training a coarse object detector that is goodgimowsemantic layout of the labeled real-world scenes. Finally,

demonstrate applications of our rich database. For example

to simplify the collection of additional examples. Furtimare,

the user provides feedback to the system by indicating whdaveloped a method to learn concepts not explicitly anadtat
an output bounding box is a correct detection or a false alarin scenes, such as support and part-of relationships, which
Finally, the detector is retrained with the enlarged ddtasallows us to infer 3D information of scenes.

This process is repeated until reaching the desired nunfber o
labeled images. Another work for optimizing label propéwat

II. WEB ANNOTATION AND DATA STATISTICS

is [77], where a learner is trained to balance the relatistsco  The following is a brief summary of the overall project goals

for obtaining different levels of annotation detail, alowith

and main features that distinguishes the LabelMe database

the reduction of uncertainty the annotation provides to thigom other databases.

system. A complementary line of research tries to avoid thee
need to annotate images by developing unsupervised Igarnin
algorithms [13], [65], [81], [80], [15], [59], [49], [68], 16].

These works are characterized by creating learners to recog
nize and distinguish object classes that can be trained with

Designed for object class recognition as opposed to
instance recognition. To recognize an object class, one
needs multiple images of different instances of the same
class, as well as different viewing conditions. Many

databases, however, only contain different instances in

unlabeled and unsegmented scenes. However, independent of a canonical pose.

the methods for creating classifiers, ground truth dataniays .
implicitly necessary to validate inferred annotations dod
assign names to discovered object categories.

Web-based annotation tools provide a means of building
large annotated datasets by relying on the collaboratiestef
of a large population of users [78], [56], [51], [62], [64].
Recently, such efforts have shown to be successful. Thes
Open Mind Initiative [64] aims to collect large datasetsnfro
web users to develop intelligent algorithms. More spedifica
common sense facts are recorded (e.g. red is a primary color)
with over 700K facts recorded to date. This project seeks
to extend their dataset with speech and handwriting data..
Flickr [56] is a commercial effort to provide an online image
storage and organization service. Users often provideiaéxt
tags as captions for depicted objects in an image. Anothgr wa
lots of data has been collected is through an online gamésthat «
played by many users. The ESPgame [78] pairs two random
online users who view the same target image. The goal is
for them to try to “read each other’s mind” and agree on an
appropriate name for the target image as quickly as possiblee
This effort has collected over 10 million image captionssin
2003 for images randomly drawn from the web. While the
amount of collected data is impressive, only caption data is

Designed for learning about objects embedded in a scene.
Many databases consist of small cropped images of object
instances. These are suitable for training patch-based
object detectors (such as sliding window classifiers),
but cannot be used for training detectors that exploit
contextual cues.

High quality labeling. Many databases just provide cap-
tions, which specify that the object is present somewhere
in the image. However, more detailed information, such
as bounding boxes, polygons or segmentation masks, is
tremendously helpful.

Many diverse object classes. Many databases only contain
a small number of classes, such as faces, pedestrians and
cars (notable exceptions are the Caltech 101, Caltech 256,
and ImageNet databases).

Many diverse images. For many applications, it is useful
to vary the scene type (e.g. nature, street, and office
scenes), distances (e.g. landscape and close-up shots),
degree of clutter, etc.

Many non-copyrighted images. For the LabelMe database
most of the images were taken by the authors of this paper
using a variety of hand-held digital cameras. Also, many
images were contributed by various researchers seeking

acquired. Another game, Peekaboom [79], has been created to to label their images.



S e N . P Fig. 4.b shows examples of the most frequently annotated
% . 8 310t ge»mﬁ object cla_sses in our database_, a_long with their segmentgti
g 210 g . 2 masks. Fig. 4.a shows the distribution of annotated object
s 52" g‘“" classes. The vertical axis denotes the number of polygons
g E o 2,109 assigned to a particular object class and the horizontal axi
= = 2 corresponds to its rank in the list of sorted objects acogydi
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frequent object class in our datasetvisndow with 25741

Fig. 3. Evolution of the dataset since public launch of theatation tool annotated instances, followed loar, with 20304 instances.

in August 2005 through 2009. The horizontal axis denote® tigach mark The distribution of object counts is heavy-tailed. There ar

e e e e mmee, o few dozen object classes with thousands of taining samples

number of unique object descriptions. and thousands of object classes with just a handful of train-
ing samples (i.e. rare objects are frequent). The distdhut
follows Zipf’'s law [84], which is a common distribution for

« Open and dynamic. The LabelMe database is designed#pked data found also in the distribution of word counts in

allow collected labels to be instantly shared via the wainguage. The same distribution has also been found in other
and to grow over time. image databases [63], [70].

In order to achieve these goals, we designed an onlineThe above observations suggest two interesting learning
Javascript drawing interface that works on many platforisis, problems that depend on the number of available training
easy to use, and allows instant sharing of the collected dadgmples\:

Fig. 2 shows a snapshot of the LabelMe online annotation
tool. The tool provides a simple drawing interface thatvafio
users to outline the silhouettes of the objects presentcdh ea
image. When the user opens the application, a new image
is displayed. The image is randomly selected from a large
collection of images available in LabelMe. The user proside
an annotation by clicking along the boundary of an object to
form a polygon. The user closes the polygon by clicking on
the initial point or with a right click. After the polygon is
closed, a pop-up dialog box appears querying for the object
name. Once the name is introduced, the annotation is added to
the database and becomes available for immediate download
for research.

« Learning from few training samples (N> 1): this is the
limit when the number of training examples is small. In
this case, it is important to transfer knowledge from other,
more frequent, object categories. This is a fundamental
problem in learning theory and artificial intelligence, hvit
recent progress given by [14], [73], [4], [65], [45], [44],
[12], [29].

o Learning with millions of samples (N~ oo): this is the
extreme where the number of training samples is large.
An example of the power of a brute force method is the
text-based Google search tool. The user can formulate
questions to the query engine and get reasonable answers.
The engine, instead of understanding the question, is sim-
ply memorizing billions of web pages and indexing those

_ ) ) . . pages using the keywords from the query. In Section I,
. Fig. 3 plpts the evolution of the dataset since it went on]lne we discuss recent work in computer vision to exploit
in 2005. Fig. 3.a shows how the number of annotated objects iions of image examples.

(one annotated object is composed of the polygon outlining . o

the object boundary and the object name) has been grOWingl_\lote, however, as illustrated in F|g_. 4.a, that _co’llected
Notice the constant database growth over time. Fig. 3.b sho nchma_rk_datasets do not pe_cessarlly follow lefs_ I?‘W'
the number of images with at least one object annotated. Wden building g_benchmark, It Is common to have §|m|Iar
users are not required to fully annotate an image, differegnounts of tralnlng.(_ja_\ta fpr .aII _ObJeCt clas_ses. This pro-
images have varying numbers of annotated objects. As \%ces somewhat artificial distributions that might not wdfle

try to build a large dataset, it will be common to have manghe frequency in which objects are encountered in the real

images that are only partially annotated. Therefore, dmie world. The presence of the hea\_/y _tailed distribution of obje
algorithms and training strategies that can cope with tsge counts in the LabelMe dataset is important to encourage the

will allow the use of large datasets without having to makgevelopment of algorithms that can learn from few training

the labor-intensive effort of careful image annotation. samples by transferring knowledge from other, more frequen
Fig. 3.c shows the evolution of the number of differerfPiect categories [14], [73], [4], [65], [45], [44].
object descriptions present in the database. As users are no
restricted to only annotate a pre-defined set of classes,
dataset contains a rich set of object classes that constantl
grows as new objects are annotated every day. This is arAn important consideration is the source of the annotations
important difference between the LabelMe dataset and otlir example, are few or many online users providing anno-
databases used as benchmarks for computer vision algstithtations? Ideally, we would collect high quality contrilmris
Interestingly, the number does not seem to be saturatinig witom many different users since this would make the database
time. This observation was made in [63] and seems to indicat®re robust to labeling bias. In this section, we study the
that the number of visual object categories is large. contributions made through the online annotation tool by

A. Dataset evolution and distribution of objects

eStudy of online labelers



m LabelMe Window (25741) Car (20304) Tree (17526) BU|Id|ng (16252) Person (13176) Head (8762) Sky (7080)
4 - 7 3
10 . = = = Streetscenes ; it
"o
., Pascal 2008 IE“ 7
3 . Caltech 101 Ill al .
10 H — -MSRC ;
- Leg (5724) Road (5243) Arm (4778)  Sidewalk (4771) Wall (4590) Sign (4587) Plant (4384) Chalr (4065)
i) ~ - w = | — ;"1
c - - =
S N ' :mﬁ P
-
10' | Door (4041) Table (3970 Torso 3101) Mountain ( 2750) Streetlight (2414) Wheel (2314) Cablnet (2080
| ﬂ . -
10° 0 ; > < ‘l‘ “
10 10 10 10
a) Frequency rank

Fig. 4. a) Distribution of annotated objects in the LabelMdeaction and comparison with other datasets (plotted grldg axes). b) Examples of the most
frequent objects in LabelMe. The number in parenthesis tésnilie number of annotated instances. These numbers writrevolve as more objects are
annotated every day.

Man hours for 85860 polygons: 458.40

o Another interesting question is the amount of effort online
labelers spend annotating objects. To answer this, we amaly
the length of time it takes a user to label an object. We count
the time starting from when the user clicks the first control
point until the user closes the polygon and finishes entehiag
object name. Fig. 5(b) shows the distribution of the amodint o
time (in seconds) to create an object. Notice that most tbjec
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) j are labeled in under 30 seconds, with a mode of 10 seconds.
GO e e e o 2 ¢ soonds” @ Considering only annotations taking less than 100 secamds t
(@) ®) produce (to avoid outlier annotations), the database omnta

458.4 hours (19.1 days) of annotation time across all users
Fig. 5. (a) Number of new annotations provided by individuars of -~ dyring this time period. We wish to note that this analysiesio
the online annotation tool from July 7th, 2008 through Madd®th, 2009 t include th t of i t looki t the i
(sorted in descending order, plotted on log-log axes). tal,td1382 unique no_ _II’IC ude the amou_n or ime spent looking at the Image or
IP addresses interacted with the labeling tool, with oved 2fferent IP editing other annotations.
addresses providing over 100 object labels. Notice that eteagdiverse set We further look at the difficulty of Iabeling particular oble
of users who make significant contributions through the &atum tool. (b) - .
Distribution of the length of time it takes to label an obj@ntseconds). Notice classes. In _Table l, we S_hOW the average Um_e (m Seconds) to
that most objects are labeled in 30 seconds or less, with tgerbeing 10 label an object for a particular class, along with the totahm
seconds. Excluding those annotations taking more than &66nsds, a total hours devoted to Iabeling that object. We exclude annatatio
of 458.4 hours have been spent creating new annotations. times exceeding 100 seconds from our analysis. Windows,
which often require only four control points, are easiest to
label. Region-based objects, such as sky and ground, ae mor
analyzing the online user activity from July 7th, 2008 thgbu difficult.

March 19th, 2009.

Since the database grows when users provide new anno- IIl. THE SPACE OFLABELME IMAGES
tations, one way of characterizing the online contribuiti®®m A number of recent papers have used large datasets of im-
by looking at the number of newly created polygons that eaelges in conjunction with non-parametric methods for comiput
user makes. To analyze the number of new polygons that usesson [72], [35], [34], [36], [9] and graphics applicatiefi61],
created, we stored the actions of an online user at a paticyR0], [58]. The main observation is that when large amoufits o
IP address. In Fig. 5(a), we plot the total number of objecisiages are available, image indexing techniques can betased
created by each IP address, sorted in descending ordete¢blotetrieve images with similar object arrangements as theyque
on log-log axes). We removed from consideration polygomsiage. This observation suggests a non-parametric agproac
that were deleted during the labeling session, which often cfor scene understanding. With a large enough database, we
responded to mistakes or from testing of the annotation toohn find some images in the database that are close to a query
There were in total 11382 unique IP addresses that intefacteage, such as similar scenes with similar objects arramged
with the labeling tool. During this time, 86828 new objectsimilar spatial configurations. If the images in the retaieset
were added to the database. Notice that over 200 differeme partially labeled, then we can transfer the knowledge of
IP addresses provided over 100 object labels. This suggehts labeling to the query image.
that a diverse set of users are making significant contobati  In section |l we studied the number of different object
through the annotation tool. Primarily, contributers tetido categories available in the LabelMe dataset and the disitoito
come from research universities, with occasional cortidimg of annotated examples for each category. In this sectiornreve a
from random visitors to the annotation tool. interested in using the database to study how many different



Fig. 6. The images are arranged according to semantic sityiteetween images (nearby images will contain similareots in similar spatial configurations).
Each thumbnail shows the object segments of each imageflvatbbjects consistently colored across the databaseouththere are some easily identifiable
clusters in the space, most of the images are organizedsaarosntinuous space in which transitions across imagesnavets.

scenes there are in LabelMe, and how are they organized. tWe number of different scene configurations increases alyd o
will also look into how many images need to be annotateda small percentage of scenes seem to co-occur often. In the
case ofn = 4, Fig. 7.b shows some of the most frequent 4-
grams, along with an example image for each 4-gram. There
are more than 100 4-grams that appear 10 times or more in
In cognitive psychology, studies on scene perception sugs gdatabase. Therefore, one can expect that, as the databas
gests that the gist of a scene might be composed of t@reases in size, the most common scenes will have many
scene category and a list of 4 or 5 objects. In [69], it Wagstances. The heavy tail of the distribution also pointthe
shown that observers can recognize images at low resolutigqrt that, independent of how large the database is, thdre wi
In the extreme case where images have jisk 32 pixels, ajways be a large number of scene configurations for which

observers are able to recognize the scene category, toge{a€ will have only a handful of training examples.
with 4-5 objects, with an accuracy of & Our goal now is

to study how many configurations of 4 objects are present in )

the LabelMe database. This is similar to studies in languaBe The space of images

that build probabilistic models of groups efwords. In the previous section we discretized the space of scenes by
Fig. 7 shows the distribution ofi-grams obtained as thedefining a scene as being a collectionrof= 4 large objects

n words that describe the largest objects in each image.and ignoring their spatial organization. Here, we will cidies

These statistics are derived from the analysis of 12201lescen description of all the objects in the image that will also

containing a total of 180391 annotated objects. For eatittorporate spatial information.

image, we sort all the objects according to the percentage ofWe first define a distance between annotations that captures

the image covered by each polygon. We only consideritheour notion of semantic distance between two images. Ideally

largest objects. The figure shows the distribution of scénes two images are semantically similar if their segmentatimmd

grams) forn = 1,2,4,8. For all the tested values of, the object labels are interchangeable across the two images. Ou

distribution appears to follow a power law [57]. Asncreases, definition of semantic distance between two images is based

A. Distribution of scene types
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Counts

1 10 100 1000
a) Frequency rank b)

Object Average labeling time  Total labeling time (hours)
window 9.52 11.08
door 9.98 2.23
sign 10.35 2.16
lamp 11.47 6.93
bottle 14.42 2.02
head 14.79 8.40
plant 16.12 2.22
arm 17.04 14.92
car 17.99 5.49
wall 18.54 19.65
grass 18.54 2.99
floor 19.27 7.95
ceiling 20.57 6.43 2
table 20.88 3.14 2
sidewalk 21.09 4.26 E
shelves 22.57 241 E
leg 22.77 24.04
building 23.16 14.83 R
person 23.40 2.94 FPEgs s
road 23.44 4.17 a) ® 4
torso 23.80 14.14
chair 24.16 4.18 ]
tree 25.94 11.85
sky 29.37 10.76
plate 34.42 3.69
fork 34.60 2.75
wineglass 41.52 2.00
TABLE |

AVERAGE TIME TO LABEL A GIVEN OBJECT CLASS ALONG WITH THE
TOTAL NUMBER OF HOURS SPENT LABELING THE CLASSNOTICE THAT
CERTAIN OBJECT CLASSES ARE EASIER TO LABEE.G. WINDOWS), Fig. 8. a) Procedure to estimate the semantic distance eptywairs of
WHICH REQUIRE FEWER CONTROL POINTSOTHERS ARE HARDER(E.G. images. For each image we compute the histogram of objeeislabdifferent
ROAD, SKY), WHICH ARE REGIONS AND REQUIRE MORE CONTROL POINTS non-overlapping image windows. Then, we define the simjldretween two
images as the intersection between the two object histagrajnExamples
of similar images with this metric.

on the histogram of object labels in the two images [71dnes), in addition to their spatial organization. The spati
First, we assign each pixel to a single object category. Thegyramid matching allows for the comparison of images such
we create the histogram of the number of pixels that belotigat two images that have the same object labels in similar
to each category. In order to account for spatial infornmaticspatial locations are rated as closer than two images wih th
we divide the image intaV x N non-overlapping windows same objects but in different spatial locations. Furthesmo
and we build the object histogram for each window. Thethis is rated closer than two images with different object
to measure the distance between two images we use spatiasses.

pyramid matching [32], [17] over object labels. This praxes Fig. 6 shows a visualization of 12201 images that are fully
is illustrated in figure 8. Matching of object label histogres annotated from the LabelMe dataset. The images are orghnize
results in a simple similarity measure that takes into antowaccording to the similarity defined above. As a consequence,
all the objects present in the image (and not just the 4 largéso nearby images in this mosaic are likely to contain the



Fig. 9. Examples of input images and their nearest neighinotise dataset using the GIST descriptor [40]. For each pdle#) mosaic showing the query
image (red box) and its 8 nearest neighbors. (middle) labelgects within each image and (right) the LabelMe map shgwhe location of the 1,000
closest images among the 12,201 images that compose thisetes

same object categories in similar spatial configuratio&hE scene. Furthermore, we can reduce the size of the road humtil t

tile shows the segmentation of an image, with each objessclaicture becomes a field. Finally, we can add mountains in the

having a unique coldr background until the scene becomes a mountainous landscape
There are a number of methods that can be used to obtahis transformation can take place by traversing the spéce o

a 2D visualization of the space of images from the matrix afhages, as shown in the bottom of Fig. 6.

semantic similarities defined above. For the visualizatbn

Fig. 6 we used kernelized sorting [42]. The advantage of this Recognition by scene alignment

technique is that it allows specifying the form of the output As illustrated in Fig. 6, some regions of the scene space

space (in this case a rectangular grid). Kernelized soxtiitig seem to be covered by a large number of examples. The goal
try to finq the_ best correspondem_:e betyveen_the images N is, given a new image, to extract a set of imagé features
the Iocatlons_ in the rectangular grid, while trying to prese to locate the region of the space that is the closest, at the
the same neighborhood structure. " . semantic level, to the input image [20], [71], [70].

Although there are some easily identifiable clusters in theIn the examples used here, we use the GIST descriptor [40]
space, most of the images in the LabelMe dataset are Orgmni?oeestimate the similarity betV\;een two images. To compuge th

across i C(Lntmuoustﬁpal\;l:e Itn V]:/Tr?h '_[ran5|t|0r_15 zt;\r::rosLs l;snla ST descriptor, the image is first decomposed by a bank of
appear to be smooth. Most of the images in the Labe ltiscale-oriented filters (tuned to six orientations dodr

dat_aset are taken by photogll’ap-h.ers stand|.ng on the gro les). Then, the output magnitude of each filter is average
Whlc.h helps to .reduce the yarlabll|ty across Images. I—IO"VeV(?)ver 16 non-overlapping windows arranged on & 4 spatial
it might also introduce biases not found in other phot rid. The resulting image representation is a 512 dimeiion

collections, such as Flickr. The clusters that are visilole eature vector. The distance between two images is computed

Fig. 6 cprrespond to rggions of the image space that_ are Iagtthe Euclidean distance between GIST descriptors.
appropriately sampled in Fhe LabelMe da.t"?‘set (.9. a dullec Fig. 9 shows examples of 8 input images and their nearest
of flower phot.ographs, pictures of specific monuments, Orn%ighbors in the dataset using the GIST descriptor. For each
collection of pictures of silverware). However, there isagge anel, we show the query image (red box), the 8 nearest
portion of the space that has no clearly defined bounda”%ﬁighbors, the annotations of the neighbors and the latatio

For instance, we can S“"?” on a picture of a busy_ downtoveg? the 1,000 closest images among the 12,201 images that
center and continue moving in the space by reducing the s pose this test set, as shown in Fig. 6. When searching

of the buildings and adding more sky until we get a hlghwa%r pictures of specific places, such as a picture of Notre
IAn interactive  version of the tool is available at:D@mMe, if .the database Contains many exemplars OT that place,
http://people.csail. mit.edu/torralba/research/L tedlabelmeMap/ it is possible to get very tight matches. However, in general



we will work at the category level. We want to find image# part because there are fewer than 2000 indoor scenes out
corresponding to visually similar places (i.e. containéimgilar of the 12,201 images, but also due to the large variability of
objects roughly with the same spatial configuration) but thaisual appearances for indoor scenes. Lower performantes o
do not necessarily correspond to the same world location indoor scenes are also found with other datasets [43].

even the same city. As shown in Fig. 9, for several of the Fig. 10.a also gives a hint to an important question: How
input images, the images in the database that have closa visnany more images do we need to label? The figure shows the
similarity (as captured by the GIST descriptor) also falthin  upper bound of the extrapolated performance as we increase
a localized region of the map organized by semantic distanite database size (here we assume that, by increasing the
(Fig. 6). database size we do not introduce new kinds of scenes). As

This property provides the basis for several approaches &brown in the graph, performance reache% %6r a database of
recognition that use the retrieved images to make proposale10° images. If we ha® x 106 images, then, on average, for
about possible object categories that can be present in #reimage we can find another image that ha @bthe pixels
input image [20], [50], [71], [70], [35], [34]. To illustrat labeled with the same object category. Although increasing
the power of large scale databases, we evaluate the follpwirabelMe will require a significant labeling effort, this ¢t
simple algorithm: given an image and an annotated databag&tabase size is feasible.
search for the image in the database that is closest to thi inp
image (using GIST to measure image similarity). Then, outpu
the annotation of the nearest neighbor as a labeling of the
input image. As a performance metric, we use the percentagén this section we present two extensions of LabelMe.
of pixels that are correctly labeled. To test the algorithve, The first one shows how it is possible to infer knowledge
will use as input the set of 12,201 images used in Fig. 9. Foet explicitly present in LabelMe annotations. It uses obje
this algorithm, we can also provide an upper bound for thnotations across the LabelMe database to build a model
recognition rate. Since the input image is also annotated, wf 3D scenes. With this extra information, we are able to
can search for the image in the database that has the largesover the 3D layout of the scene and learn about other
number of pixels with the same label as the input. As our gogpatial properties of scenes in 3D from 2D images. A second
is to predict the labels of all the pixels of the input imagiags extension of LabelMe explores video annotation. We describ
a single nearest neighbor, this measure will give us an upgéallenges encountered in video annotation and propose an
bound to the performance. Notice how the bound increasasnotation tool to aid the creation of ground truth videcadat
proportionally to the size of the database.

In fig. 10 we demonstrate how the performance of nearest
neighbors improves as we enlarge the dataset. We also sh%\/\}:
how errors are distributed in the map of Fig. 6. In order In the previous section we described the annotation tool and
to test the dependency of the database size, we randomhalyzed the content of the database. In the online anaptati
sampled our database of 12,201 images to create 4 im&ge we ask users to only provide outlines and names for the
databases of different sizes: 12, 122, 1220, and 12201. Bdjects present in each picture. However, there are marmy oth
testing, we exclude the query image from the database td avdifferent types of information that could be requested.his t
over-fitting. Despite the simplicity of the nearest neighbsection we will show that object outlines and names from a
algorithm, we observe performance increases proportimallarge number of images are sufficient to infer many othergype
the database size, as shown in Fig 10.a. of information, such as object-part hierarchies or reaspni

The performance of this algorithm depends on the sampliagout occlusions, despite not being explicitly providedtty
density of the image space. Therefore, one can expect thaer. Furthermore, we will discuss how to recover a full 3D
the performance will vary depending on the regions of thdescription of the scene, as shown in Fig. 11. Our system can
space. In this study we can use the organization of scemesonstruct the 3D structure of the scene, as well as estimat
from Fig. 6 to visualize the distribution of errors. Fig 10.he real-world distances between the different depictgeatd
shows how the performance is distributed in the map of scen®s an added benefit, the quality of the reconstruction teads t
as we change the size of the database. As we can see,itingrove as the user improves the annotation of the image.
performance appears to smoothly vary across differenbnsgi A database of images and their 3D description would be
of the image space. This suggests that different regionkseof useful for various tasks in computer vision. For example, th
space are harder to recognize and require higher densityirdbrmation can be used to learn about how objects live in the
image samples. Moreover, the distribution of performarsce world and to train systems to detect images. Techniques for
very similar between the algorithm using GIST descriptord a aligning images [20], [26], [50] may also benefit from such
the upper bound for each image. data. The database can be used to validate algorithms that

The region with highest performance corresponds to catput 3D. Furthermore, image content can be queried based
region of the space that contains many pictures of specifin absolute attribute®(g.tall, wide, narrow). We demonstrate
monuments under similar viewpoints. In such a case, it l®mw using the user annotations we have so far collected
possible to find very close matches, with the annotatioffem the LabelMe system, we can complement our database
between the input and retrieved images being almost identiadepicting different scene and object classes with infoionat
The worst performance is found in the indoor scenes regiahout their underlying real world 3D coordinates. Previous

IV. BEYOND 2D IMAGES

rom annotations to 3D
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Fig. 11. We can recover 3D information from the user annmtati We show outputs for two input images. Top-left: Inpuag®. Top-right: User annotations
provided for the image. Middle-left: Recovered polygon amifje types. Polygons are eittgmound (green),standing(red), orattached(yellow). Edges are
contact (white), occludedblack or attached(gray). Middle-right: Recovered depth map in real-worldabnates (a color key, in log scale, appears on the
right). Bottom: A visualization of the scene from a diffetariewpoint.

work has explored ways of associating 3D information to improduce 3D reconstructions [61]. While this line of reséasc
ages. For example, there are existing databases captutied wiomising, at present, producing 3D reconstructions igtdich
range scanners or stereo cameras [53], [52]. However, thésa small number of sites in the world. Finally, there aresoth
databases tend to be small and constrained to specificdasatirecent relevant methods to recover geometric information f
due to the lack of widespread use of such apparatuses. images [21], [58], [9], [46], [67], [33], [19], [38], [83].

Instead of manually gathering data with specialized equip-An alternative approach is to ask humans to explicitly label
ment, other approaches have looked at harnessing the vadtinformation [26], [7], [39]. However, this informatioraa
amount of images available on the Internet. For examp@ difficult and unintuitive to prOVide. |nstead, we develi)p
recent work has looked at learning directly the dependefhcy'®ethod that does not require from the user any knowledge
image brightness on depth from photographs registered without geometry, as all of the 3D information is automatjcall
range data [53] or the orientation of major scene Componeﬁ-fgerred from the annotations. For instance, the methodl wil
such as walls or ground Surfacesy from a Variety of ima&é\ow that aroad is a horizontal surface and thatcar is
features [22], [23], [24]. Since only low and mid level visuasupported by theoad. All of this information is learned by
cues are used, these techniques tend to have limited agcuridlyzing all the other labels already present in the databa
across a large number of scenes. Other work has looked aft first glance, it may seem impossible to recover the ab-
using large collections of images from the same location smlute 3D coordinates of an imaged scene simply from object
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labels alone. However, the object tags and polygons prdvide
by online labelers contain much implicit information about
the 3D layout of the scene. For example, information about
which objects tend to be attached to each other or support one
another can be extracted by analyzing the overlap between
object boundaries across the entire database of annatation
These object relationships are important for recovering 3l
information and, more generally, may be useful for a generic
scene understanding system.

Our reconstructions are approximations to the real 3D struc
ture as we make a number of strong simplifying assumptions
about the object geometries. Here we summarize all the
information that is needed by our system in order to provide(%z
3D reconstruction of the scene. Our reconstructions arecbas
on the following components, which are inspired from earlyig. 12. Automatically recovered spatial relationshipsaaen objects from

work in line-drawing analysis [2], [6], [3], [27], [66]. the LabelMe dataset. The left-hand side of each pair depigsaph of the
. . . spatial relationship holding between object classes. e-hand side shows
+ Object types We simplify the 3D recovery problem by examples of the spatial relationship. (a) Attachment iiships for car. (b)

Considering three simple geometric models for the obiecﬁgpport relationships for table. Notice that the spatifdtienship may form
that compose each scene: a hierarchy.

— Ground objects: we assume that ground objects are
horizontal surfaces (e.g. road, sidewalk, grass, sea).

— Standing objects: we assume that standing objects
are modeled as a set of piecewise-connected planes
oriented orthogonally to the ground plane (e.g. per-
son, car, boat, table).

— Attached objects: we assume that attached objects are
part-of other objects (e.g. hand, window, road mark-
ing), with their 3D position completely determined
by their parent object.

« Relations between objectsin addition to the object
types described above, we also consider two types of
relationships between pairs of objects:

— Supported-by relationship: we assume that standing
objects in the scene are supported by a ground

object, with the relationship extracted at the catego&g' 13.  Snapshot of the 3D measuring tool. Once we compue3ih
ordinates for a depicted scene, we can make measuremgrdseioe

level. For instance, we expect that sidewalks sUPPQdmponents. Here, we show the height and width of the carchwisi 13.68

people, fire hydrants, and parking meters. meters away from the camera center. We can also compute shenck
_ Part-of relationship. attached objects are part-of Othg?gmehen anyktwo points in the scene, such as the selecte paithe building
. . S . and the truck.
objects, with the relationship extracted at the cate-

gory level. For instance, heads are attached to people,

windows are attached to buildings, and manhol@ct classes. Fig. 12(a) shows automatically recoveretgiar
covers are attached to roads. relationships across the database. To decide when an object
In our model, we assume that a scene consists of a numbategory is part-of another, we evaluate the frequencygti hi
of objects that stand on the ground. This assumption holddative overlap between polygons of the two categories. Fo
true for many different imaged scenes (e.g. streets, natuirsstance, as windows are part of buildings, whenever wirgdow
landscapes, lakes, indoors). In addition, we assume tleat #nd buildings co-occur in a scene, it is quite likely that the
horizon line is parallel to the horizontal axis of the camenaolygon defining a window will completely lie inside the
(this is true for most normal pictures). polygon defining the building. On the other hand, street lamp
There are two steps for obtaining the 3D information: (i) thare not part of buildings, so one would expect that the patggo
learning stage, where the system learns from all the arettatdo not systematically overlap.
objects in the database the relationships that hold betweenn a similar manner, we can reason about the supported-by
all the object classes (part-of and supported-by) and K{&) trelationships. Objects that are supported by another tend t
reconstruction stage, where, given an annotated imagelbndchave the bottom part of its polygon live inside the suppagrtin
the learned relationships, the system builds a 3D model fobject. For instance, we can make a list of all the object
the input image. categories that overlap with the bottom part of the polygon
We start by describing the learning stage to recover thiefined by all thestreet lampsn the database. If the object
part-of and supported-by relationships that hold betwd®n ds a supported object, we will see that this list is relativel
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the polygon and edge types, we can already pop-up the scene
by placing standing objects on the ground objects and tgttin
attached objects remain on the objects they are attached to,
illustrated in Fig. 11.

We wish to also extract absolute 3D coordinates. Important
for this is to (i) produce 3D coordinates such that objects
keep consistent heights across the database and (ii) enforc
constraints on the image imposed by the camera through
perspective projection. More specifically, as in [28], warte
the distribution of object heights across the database and
the camera parameters corresponding to each image in the
database. This is achieved in an iterative fashion by first
estimating the camera parameters given the current guetses
the heights of the objects in the image. Then, the objectitgig
are updated using the estimated camera parameters. The enti
process is seeded by providing the mean and variance of the
height of the “person” object class. For the camera, we agssum
that it is held level with the ground, with the parametersgei
_Fig. 14. As t_he user adds more annotations, the quality ofgbenstruction the horizon line (the image location of where the ground @Ian
ine buing. ) model cntained atter adding ther to the st of annotated VaNISNES to infinity), camera height from the ground, anaifoc
objects. d) Reconstructed model when the labels are irattyriatroduced so 1€ngth. Once we recover the camera parameters for an image,
that the building is labeled as a road and vice versa. it is straightforward to obtain the 3D information of the see

Please see [28], [48] for more details.

] _ We show output depth maps of our system in Fig. 11. The
short. Fig. 12(b) shows automatically recovered suppéied gisiance (in meters) is given by the color key, which is gott
relationships across the database. in log scale. In addition, we can interact with the scene by

Once the learning is done and we have collected all thging measurements of the scene components. In Fig. 13, we
co-occurrence statistics between object category pa@sam  ghoy the height and width of a depicted car. We also show
use the discovered relationships to recover 3D models of ngy% distance between two points in the scene. Notice that the

images. Given an annotated image, we will use the polygoRgasured points appear to be consistent with the perceived
and object names, along with the discovered relationships,§isiances.

decide the object types (standing, ground, attached) fafal

tEe annotatlogsbln thz |mage.f FO: thls, vr\]/g extrazl:t the cueslgh a dataset that simultaneously utilized both camera a®il la

t ed s;pporte -by an gartt—)p re atlogs 'PS (ﬁo ygon mdr range scanner apparatuses [53]. The dataset was gathered on
and distance tq ground o jects) and use the recovere > Stanford University campus and primarily depicts oatdo
occurrence statistics to infer the object types. We show t Benes. We provided dense object labels for 62 images in

inferred polygon types in Fig. 11, where standing objects %he dataset, with each image having 256x192 pixel resaiutio

colored red, ground objects are green, and attached Ol"’Jm:tSThe system output was then compared with the output of the

yeIIow._ Notice that the recovered object types agree Wahw'laser range scanner using mean per-pixel relative errer (i.
the objects present in the scene.

" . . _ absolute difference between the two depth maps normalized
_In add|t|qn to knOW|_ng t_he_ supp(_)rt relationship be_tweeBy the output of the laser range scanner). Due to noise in the
different ObJeCt, categories, it is also n_‘nportant to knowiath range data, we only considered ground truth and system butpu
part of the object ma_kes c_ontact with the ground. For %’epths in the 5-70 meter range. To overcome bias in the data,
ample, the contact points with the ground plane for standl% performed cross-validation, with training sets coisist
objects will provide information about the relative distan of 20 images and validation sets consisting of 42 images,

of the object to the camera. For this, we automatically labgi, found linear regressors that minimized the mean pet-pix
polygon edges into three typesontact attached occlusion relative error over the training sets

We assume that attached and groynd opjects have all of thelbur system has relative error 6294 0.02, with 40% £ 2%
edges labeled as attached. Standing objects can have tcont{a\ct . . : .
: : he pixels used in the evaluation. As a baseline, we

or occlusion edges. We extract the following cues for each . .
i . ; . compared against the harmonic mean of the depth maps
polygon edge: length, orientation, and distance to a suppor ; AP .

. ! .corresponding to the training images. For each pixel, the
object. These cues are used to infer whether the edge is-a ) . N

. . . rmonic mean is computed a8 = —x—— Wwhere d;

contact or an occlusion edge. A generative model is us_ea L _
to classify the edge type, with the model parameters trainisd the depth value at the corresponding pixel in thk
on a held-out training set. Fig. 11 show the edges labelédage in the training set. The harmonic mean minimizes the
into the different types, with white lines corresponding tsquared relative errozi]i 1 —(di;d) across the training set.
contact edges, black lines corresponding to occlusion dgéhe baseline has relative error 0f33 + 0.04. Overall, we

and gray lines corresponding to attached edges. By recayerdbtained less noisy outputs than the laser range scanner and

c) building, road, cars d) wrong labeling

We measured the accuracy of our system output depth maps



12

&mm@ P ﬁ@ Q‘ ? Slanin b estimating the camera parameters. As more objects aretibel

. By T ore 230642 o s the estimates improve. If a user enters incorrect object, tag
Polvgonsinthisimage waow than this may result in poor outputs. Moreover, the estithate
i 3D coordinates can be greatly affected by the placement of
the control points. This can have a noticeable effect oradtst
objects since they occupy fewer pixels in the image and the
change in depth increases as one moves closer to the horizon
line in the image.

Another output of our system is a set of instructions for
building a “do-it-yourself pop-up book”, shown in Fig. 15.
EAlidelete biect N This is automatically generated and allows the user to cdt an
(g I glue the picture (with all the objects’ perspective coreegtin
order to build a physical model of their picture.

B. Video annotation

In the last decade, annotated images have played an im-
portant role in the advancement of various areas in computer
vision. Image datasets have evolved from containing few to
thousands of categories thanks to large collaborativertsffo
The concept of annotating an image to generate ground truth
is not new. However, the computational power gained by
outsourcing this task and sharing data freely has aided the
development of algorithms that take advantage of large émag
datasets. Despite these advancements and the large volumes
of video data generated everyday from video surveillance,
consumer camcorders, and mobile devices, video datasets ar
not as advanced as static image datasets. Annotated video
can be useful in the development of algorithms for motion
estimation and object, event, and action recognition. Kenli
image annotation, video annotation is not as simple. Chal-
lenges include the massive additional workload that video
frames generate, the annotation ambiguity in situatioke li
occlusion and out-of-frame objects, and multiple choiaes i
annotation granularity, amongst others.

There has been prior work on collecting and annotating
videos. The KTH database has been widely used as a video
benchmark, and depicts close-up views of a number of human
action classes performed at different viewpoints [55]. Aikr
database was collected containing various sports actifs [
While these databases offer a rich vocabulary of actiores, th
number of object and action classes and examples is small
compared to their static image counterparts.

There also has been recent work to scale up video databases
to contain a larger number of examples. THRRECVID [60]
project contains many hours of television programs and is
a widely used benchmark in the information retrieval com-
munity. This database provides tags of scenes, objects, and
actions, which are used for training and validation of re-
were able to produce visually plausible output depths belyoftjeval tasks. Another example is the database in [31], and
the 5-70 meter range. Furthermore, we were able to overcoggr extended in [30], which was collected from Hollywood
errors resulting from the range scanner that were caused fyvies. This database contains up to hundreds of examples
object reflection (e.g. mirrors, shiny surfaces) and transpcy  per action class, with some actions being quite subtle (e.g.
(windows, tree leaves). drinking and smoking. However, there is little annotation of

Because our system uses only user annotations, the quadihyects and their spatial extent and the distribution ofdht
of the output is heavily dependant on the quality of the labels troublesome due to copyright issues.

For example, consider Fig. 14, which shows outputs for dif- We created an open database of videos where users can
ferent labelings of the same scene. If few objects are ldbeleipload, annotate, and download content efficiently. In cre-
the output is less reliable since there are few constraonts fating this application, some desired features include gpee

Fig. 15. Automatically generated instructions for a “dgraturself pop-up
book” that can be constructed using paper, glue, and ssissor
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Fig. 16. (a) A snapshot of our video annotation tool exergplg densely annotated objects and some selected key fré8teic objects are annotated in
the same way as in LabelMe and moving objects require somenainuser intervention (manually edited frames are denbtethe red squares in the video
track). (b) Events can also be annotated by entering frem fEmtences and associating text tokens to object anmstatio

responsiveness, and intuitiveness. It is also importahatwle link with one or more polygons in the video. Finally, the user
system failures, such as those related to camera trackiagasked to specify the time when the described event occurs
and interpolation, so as not to dramatically hinder the usesing a time slider. Once the event is annotated, the user can
experience. The consideration of these features is vit#iéo browse through objects and events to visualize the anoatati
development of our system as they constrain the computhstails. Fig. 16.b illustrates this feature.
vision techniques that can be feasibly used. With thesesidea Nowadays, as video cameras are ubiquitous, we expect a
in consideration, we created LabelMe video, an extension ednsiderable portion of videos to be captured by handheld
LabelMe, to annotate and share videos. recorders. Even under shake-correction modes, statictsbje
The object annotation feature in LabelMe video is similan the real world might appear as motion in video. Cam-
to that of static LabelMe. An object annotation consists of @a motion can make annotation tedious as simple cloning
name, a Boolean field determining if the object is movingf polygon locations across time might produce misaligned
and a text field answering the questiaat is it doing?(if polygons even for static objects depicted in the scene. Our
anything). The spatial extent of an object is described bysgstem consists of estimating camera motion as a homographi
polygon at each frame in the video. To annotate an objetrtansformation between each pair of consecutive frameaagiur
the user is asked to outline the boundary of the object at offline pre-processing stage. The camera motion parasnete
the selected frame. Initially, the newly introduced polggoare encoded, saved in our servers, and downloaded by the
is propagated across all frames in the video. The user caab client when the user loads a video to annotate. When
inspect the annotation throughout the video and adjust tthe user finishes outlining an object, the web client soféwar
polygon at other frames. The application relies on inteafijoh propagates the location of the polygon across the video by
algorithms to propagate the polygon edits in-between kégking into account the camera parameters. Thereforegif th
frames. This process is repeated until the user is satisfigoject is static, the annotation will move together with the
with the annotation throughout the video. Fig. 16.a shows aamera and not require further correction from the user. In
example video with annotated objects at multiple key framethis setup, even with camera tracking failures, we observe
Users can also annotate events where one or more noth@ the user can correct the annotation of the polygon and
interact with each other. To enter an event, the user clicks continue annotating without generating uncorrectabiéaats
the Add Eventbutton, which prompts a panel where the useén the video or in the final annotation.
is asked for a sentence description of the everg.(the dogis  We have begun by contributing an initial database of over
chewing a bone The event annotation tool renders a buttoh500 videos and annotated over 1903 objects, spanning over
for each token in the sentence, which the user can click on a2@B object and 70 action classes. Fig. 16 shows a screenshot
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