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Abstract

Recognizing the many objects that comprise our visual world is a difficult task. Con-
founding factors, such as intra-class object variation, clutter, pose, lighting, dealing
with never-before seen objects, scale, and lack of visual experience often fool existing
recognition systems. In this thesis, we explore three issues that address a few of these
factors: the importance of labeled image databases for recognition, the ability to
discover object categories from simply looking at many images, and the use of large
labeled image databases to efficiently detect objects embedded in scenes. For each of
the issues above, we will need to cope with large collections of images.

We begin by introducing LabelMe, a large labeled image database collected from
users via a web annotation tool. The users of the annotation tool provided infor-
mation about the identity, location, and extent of objects in images. Through this
effort, we have collected about 160,000 images and 200,000 object labels to date. We
show that the database spans more object categories and scenes and offers a wider
range of appearance variation than most other labeled databases for object recogni-
tion. We also provide four useful extensions of the database: (i) resolving synonym
ambiguities that arise in the object labels, (ii) recovering object-part relationships,
(iii) extracting a depth ordering of the labeled objects in an image, and (iv) providing
a semi-automatic process for the fast labeling of images.

We then seek to learn models of objects in the extreme case when no supervision
is provided. We draw inspiration from the success of unsupervised topic discovery
in text. We apply the Latent Dirichlet Allocation model of Blei et al. to unlabeled
images to automatically discover object categories. To achieve this, we employ the
visual words representation of images, which is analogous to the words in text. We
show that our unsupervised model achieves comparable classification performance to
a model trained with supervision on an unseen image set depicting several object
classes. We also successfully localize the discovered object classes in images.

While the image representation used for the object discovery process is simple to
compute and can distinguish between different object categories, it does not capture
explicit spatial information about regions in different parts of the image. We describe
a procedure for combining image segmentation with the object discovery process to
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provide increased spatial support. We show that this procedure finds object models
with improved performance on the categorization and localization task for images
depicting scenes containing multiple objects.

We then return to the problem of learning about objects with supervision. We
describe a system that makes efficient use of a large labeled database of images for
detecting objects embedded in a scene. The system first aligns the components of
a scene depicted in an input image to the images in the database. It then makes
use of a simple model that combines an object detector with the object knowledge
contained in the labels corresponding to the aligned images. The simplicity of the
model allows learning for a large number of object classes embedded in many different
scenes. We demonstrate improved classification and localization performance over a
standard object detector. Furthermore, our system restricts the object search space
and therefore greatly increases computational efficiency.

Thesis Supervisor: William T. Freeman
Title: Professor
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5-2 (a) Comparison of gist [61], raw color pixels, bag of words [29], and

pyramid matching [47] performance on the scene recognition task. No-

tice that features incorporating spatial information perform best (gist,

pyramid matching, which perform similarly across the 15 scene cat-

egories). The average performance for the different feature sets are

gist: 71%, raw color pixels: 34.6%, bag of words: 64.1%, and pyra-

mid matching: 74%. (b) Object recognition using gist features as a

function of training set size. We enumerate the performance for a few

object categories in the table and show a scatter plot for all of the ob-

ject categories tested. Notice that the performance increases as more
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top nine most likely objects are listed). (g) Spatial likelihoods for the
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five columns: visualization of five clusters given by the model. First

row: montages of example retrieval set images assigned to each cluster.

The total number of retrieval set images assigned to each cluster is
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no clustering (red), and the full system (green). Notice that detectors
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Chapter 1

Introduction

Consider the images in Figure 1-1. What objects are depicted in the images? Where

are they located? Do you see an object that you have never seen before? If so, can

you find it in other images? Humans can answer these questions with relative ease.

Computers cannot do this yet.

Recognizing the many objects that comprise our visual world is a difficult task.

The objects depicted in the images undergo various transformations in appearance

due to pose, lighting, and scale. Often, the objects are embedded in clutter within the

scenes, sometimes with other previously unseen objects. There is also a large number

of object categories, with each category having a wide variation in appearance.

A recognition system must address these issues if there is any hope of achieving

or exceeding human-level performance. The importance of this is evident when we

examine the complex world in which we live. In order to effectively navigate in an

environment, one must recognize and know how to interact with the often many

objects that live in the environment. Processing and interpreting visual data is one

way of achieving this.

This thesis explores three areas that attempt to address a few of the above issues:

(i) the role and importance of labeled image databases for recognition, (ii) what can

be learned from simply looking at images, and (iii) ways of exploiting large labeled

image databases to detect objects embedded in scenes.
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Figure 1-1: Illustration of the diverse range of objects and how they live in the world.

1.1 Overview of Methods and Contributions

We give a brief overview of the areas developed in this thesis and highlight our

contributions.

1.1.1 Collecting a Large Labeled Database of Images

Visual experience is important if we want computer vision systems to be able to recog-

nize objects. For this, we need to have seen examples and know the identity of many

objects classes and how they are embedded in the world. This information can also

be important in training and validating recognition systems. The first contribution of

this thesis is a large labeled image database, called LabelMe, that was collected from

online users via a web annotation tool. The users of the annotation tool provided in-

formation about the identity, location, and extent of objects in images. Through this

effort, we have collected almost 200,000 labels to date. Given the collection of images

and labels, we show the contents and quality of the database. We also compare with

existing labeled databases that are used for object recognition.
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We also provide four useful extensions of the database. The first is a way of re-

solving synonym ambiguities that arise in the object labels. We accomplish this by

mapping the labels to semantic meanings provided by an electronic dictionary. The

second is analyzing the co-occurrences of the labels in the images to automatically

recover object-part relationships. This can be useful for part-based recognition sys-

tems. The third is the use of a simple heuristic to extract a depth ordering of the

labeled objects in an image. This can be used to provide ground-truth for occlusions

in an image and be useful for systems reasoning about occlusions. The fourth is a

semi-automatic process for labeling images by bootstrapping from the existing ob-

ject labels in the database. The system presents automatically segmented objects for

which the user only needs to verify, which greatly speeds up the labeling process.

1.1.2 Discovering Objects and their Location in Images

While it is useful to have many labeled images for training a recognition system, it is

also important to consider the ability to reason about unfamiliar objects. The second

contribution of this thesis is a study of what can be learned about objects in the

extreme case when no supervision is provided. We draw inspiration from the text

understanding community, where semantic models were developed to discover latent

topics in text. In our case, we wish to automatically discover object categories in

a stack of unlabeled images. To achieve this, we employ a representation of images

that is analogous to text documents. This allows us to directly apply the semantic

models to a set of images. For our analysis, we choose the Latent Dirichlet Allocation

(LDA) model [14]. We show the outputs of the model on a set of images depicting

primarily a single object against background clutter. We also analyze categorization

performance and show localization results of the discovered object categories.

While the image representation used for the object discovery process is simple to

compute and can distinguish between a few different object categories, it unfortu-

nately does not capture explicit spatial information about regions in different parts

of the image. Also, the representation often fails to distinguish between different

semantically meaningful regions. These issues limit the ability to effectively discover
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many different objects embedded in a scene.

The third contribution of this thesis is a procedure for combining image segmen-

tation with the object discovery process. The image segmenter parcels an image into

visually coherent fragments. While the image segmentation is not perfect, as it often

splits objects or includes multiple objects in the same image fragment, we observe

that it cleanly separates different object categories much of the time. With this, we

get a close approximation to the situation for which object discovery is successful. To

visualize our proposed procedure, we describe a method of selecting the best image

fragments that represent the discovered object category. We show montages of high

scoring image fragments for each discovered category and quantify the goodness of

the overall procedure for a few different image sets depicting more complicated scenes.

1.1.3 Detecting Objects in Images through Scene Alignment

After considering the case of learning about objects without supervision, we return

to the situation where we have supervision. The fourth contribution of this thesis is a

system for detecting objects embedded in a scene. Our system aligns the components

of a scene depicted in an input image to a large database of labeled images. The

scenes that align best in the image database are used to assist in detecting objects

in the input image. The scene alignment offers the advantage that we do not have

to model various complex interactions that may exist between objects embedded in

a scene. To overcome incorrect scene matches, we develop a model for clustering

the database images based on their labels. We subsequently combine the knowledge

gleaned from the clusters with trained object detectors to detect objects. We show

system outputs and validate on the LabelMe database.

1.2 Thesis Organization

In Chapter 2, we describe the LabelMe database and annotation tool and examine its

contents and quality. We also explore extensions of the database and compare it to

existing databases used for object recognition. Chapter 3, we consider the problem of
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unsupervised object discovery in images. We describe the representation and model

used for object discovery. We examine and quantify its outputs. In Chapter 4,

we look to overcome the image representational issues by augmenting the object

discovery process with image segmentation. We visualize and quantify the discovered

categories. We describe the model for supervised object detection in Chapter 5 and

show its performance. Finally, in Chapter 6 we conclude.
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Chapter 2

LabelMe: a database and

web-based tool for image

annotation

2.1 Introduction

Thousands of objects occupy the visual world in which we live. Biederman [12] esti-

mates that humans can recognize about 30000 entry-level object categories. Recent

work in computer vision has shown impressive results for the detection and recogni-

tion of a few different object categories [98, 38, 51]. However, the size and contents of

existing datasets, among other factors, limit current methods from scaling to thou-

sands of object categories. Research in object detection and recognition would benefit

from large image and video collections with ground truth labels spanning many dif-

ferent object categories in cluttered scenes. For each object present in an image, the

labels should provide information about the object’s identity, shape, location, and

possibly other attributes such as pose.

By analogy with the speech and language communities, history has shown that

performance increases dramatically when more labeled training data is made avail-

able. One can argue that this is a limitation of current learning techniques, resulting
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in the recent interest in Bayesian approaches to learning [26, 83] and multi-task learn-

ing [92]. Nevertheless, even if we can learn each class from just a small number of

examples, there are still many classes to learn.

Large image datasets with ground truth labels are useful for supervised learning of

object categories. Many algorithms have been developed for image datasets where all

training examples have the object of interest well-aligned with the other examples [95,

38, 98]. Algorithms that exploit context for object recognition [89, 41] would benefit

from datasets with many labeled object classes embedded in complex scenes. Such

datasets should contain a wide variety of environments with annotated objects that

co-occur in the same images.

When comparing different algorithms for object detection and recognition, labeled

data is necessary to quantitatively measure their performance (the issue of comparing

object detection algorithms is beyond the scope of this chapter; see [4, 49] for relevant

issues). Even algorithms requiring no supervision [77, 67, 26, 83, 82, 65] need this

quantitative framework.

Building a large dataset of annotated images with many objects is a costly and

lengthy enterprise. Traditionally, datasets are built by a single research group and

are tailored to solve a specific problem. Therefore, many currently available datasets

only contain a small number of classes, such as faces, pedestrians, and cars. Notable

exceptions are the Caltech 101 dataset [27], with 101 object classes (this was recently

extended to 256 object classes [35]), the PASCAL collection [24], and the CBCL-

streetscenes database [13].

We wish to collect a large dataset of annotated images. To achieve this, we

consider web-based data collection methods. Web-based annotation tools provide

a way of building large annotated datasets by relying on the collaborative effort of

a large population of users [99, 73, 70, 81]. Recently, such efforts have had much

success. The Open Mind Initiative [81] aims to collect large datasets from web users

so that intelligent algorithms can be developed. More specifically, common sense

facts are recorded (e.g. red is a primary color), with over 700K facts recorded to date.

This project is seeking to extend their dataset with speech and handwriting data.
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Flickr [73] is a commercial effort to provide an online image storage and organization

service. Users often provide textual tags to provide a caption of depicted objects in

an image. Another way lots of data has been collected is through an online game

that is played by many users. The ESP game [99] pairs two random online users

who view the same target image. The goal is for them to try to “read each other’s

mind” and agree on an appropriate name for the target image as quickly as possible.

This effort has collected over 10 million image captions since 2003, with the images

randomly drawn from the web. While the amount of data collected is impressive,

only caption data is acquired. Another game, Peekaboom [100] has been created to

provide location information of objects. While location information is provided for

a large number of images, often only small discriminant regions are labeled and not

entire object outlines.

In this chapter we describe LabelMe, a database and an online annotation tool

that allows the sharing of images and annotations. The online tool provides func-

tionalities such as drawing polygons, querying images, and browsing the database. In

the first part of the chapter we describe the annotation tool and dataset and provide

an evaluation of the quality of the labeling. In the second part of the chapter we

present a set of extensions and applications of the dataset. In this section we see that

a large collection of labeled data allows us to extract interesting information that was

not directly provided during the annotation process. In the third part we compare

the LabelMe dataset against other existing datasets commonly used for object de-

tection and recognition. The results in this chapter were developed in collaboration

with Antonio Torralba (who contributed equally), Kevin P. Murphy, and William T.

Freeman and will appear in a special issue of the International Journal of Computer

Vision [69]

2.2 LabelMe

In this section we describe the details of the annotation tool and the results of the

online collection effort.
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2.2.1 Goals of the LabelMe project

There are a large number of publically available databases of visual objects [92, 4,

50, 63, 25, 27, 28, 35, 18, 52, 48, 17]. We do not have space to review them all

here. However, we give a brief summary of the main features that distinguishes the

LabelMe dataset from other datasets.

• Designed for object class recognition as opposed to instance recognition. To

recognize an object class, one needs multiple images of different instances of the

same class, as well as different viewing conditions. Many databases, however,

only contain different instances in a canonical pose.

• Designed for learning about objects embedded in a scene. Many databases

consist of small cropped images of object instances. These are suitable for

training patch-based object detectors (such as sliding window classifiers), but

cannot be used for training detectors that exploit contextual cues.

• High quality labeling. Many databases just provide captions, which specify that

the object is present somewhere in the image. However, more detailed informa-

tion, such as bounding boxes, polygons or segmentation masks, is tremendously

helpful.

• Many diverse object classes. Many databases only contain a small number of

classes, such as faces, pedestrians and cars (a notable exception is the Caltech

101 database, which we compare against in Section 2.4).

• Many diverse images. For many applications, it is useful to vary the scene type

(e.g. nature, street, and office scenes), distances (e.g. landscape and close-up

shots), degree of clutter, etc.

• Many non-copyrighted images. For the LabelMe database most of the images

were taken by the contributing authors of this chapter using a variety of hand-

held digital cameras. We also have many video sequences taken with a head-

mounted web camera.
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• Open and dynamic. The LabelMe database is designed to allow collected labels

to be instantly shared via the web and to grow over time.

2.2.2 The LabelMe web-based annotation tool

The goal of the annotation tool is to provide a drawing interface that works on many

platforms, is easy to use, and allows instant sharing of the collected data. To achieve

this, we designed a Javascript drawing tool, as shown in Figure 2-1. When the user

enters the page, an image is displayed. The image comes from a large image database

covering a wide range of environments and several hundred object categories. The

user may label a new object by clicking control points along the object’s boundary.

The user finishes by clicking on the starting control point. Upon completion, a popup

dialog bubble will appear querying for the object name. The user freely types in

the object name and presses enter to close the bubble. This label is recorded on the

LabelMe server and is displayed on the presented image. The label is immediately

available for download and is viewable by subsequent users who visit the same image.

The user is free to label as many objects depicted in the image as they choose.

When they are satisfied with the number of objects labeled in an image, they may

proceed to label another image from a desired set or press the Show Next Image

button to see a randomly chosen image. Often, when a user enters the page, labels

will already appear on the image. These are previously entered labels by other users.

If there is a mistake in the labeling (either the outline or text label is not correct), the

user may either edit the label by renaming the object or delete and redraw along the

object’s boundary. Users may get credit for the objects that they label by entering

a username during their labeling session. This is recorded with the labels that they

provide. The resulting labels are stored in the XML file format, which makes the

annotations portable and easy to extend.

The annotation tool design choices emphasizes simplicity and ease of use. How-

ever, there are many concerns with this annotation collection scheme. One important

concern is quality control. Currently quality control is provided by the users them-

selves, as outlined above. Another issue is the complexity of the polygons provided
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Figure 2-1: A screenshot of the labeling tool in use. The user is shown an image along
with possibly one or more existing annotations, which are drawn on the image. The
user has the option of annotating a new object by clicking along the boundary of the
desired object and indicating its identity, or editing an existing annotation. The user
may annotate as many objects in the image as they wish.
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by the users (i.e. do users provide simple or complex polygon boundaries?). Another

issue is what to label. For example, should one label the entire body, just the head,

or just the face of a pedestrian? What if it is a crowd of people? Should all of the

people be labeled? We leave these decisions up to each user. In this way, we hope

the annotations will reflect what various people think are natural ways of segmenting

an image. Finally, there is the text label itself. For example, should the object be

labeled as a “person”, “pedestrian”, or “man/woman”? An obvious solution is to

provide a drop-down menu of standard object category names. However, we prefer

to let people use their own descriptions since these may capture some nuances that

will be useful in the future. In Section 2.3.1, we describe how to cope with the text

label variability via WordNet [30]. All of the above issues are revisited, addressed,

and quantified in the remaining sections.

A Matlab toolbox has been developed to manipulate the dataset and view its

contents. Example functionalities that are implemented in the toolbox allow dataset

queries, communication with the online tool (this communication can in fact allow

one to only download desired parts of the dataset), image manipulations, and other

dataset extensions (see Section 2.3).

The images and annotations are organized online into folders, with the folder

names providing information about the image contents and location of the depicted

scenes/objects. The folders are grouped into two main categories: static pictures

and sequences extracted from video. Note that the frames from the video sequences

are treated as independent static pictures and that ensuring temporally consistent

labeling of video sequences is beyond the scope of this chapter. Most of the images

have been taken by the authors using a variety of digital cameras. A small proportion

of the images are contributions from users of the database or come from the web. The

annotations come from two different sources: the LabelMe online annotation tool and

annotation tools developed by other research groups. We indicate the sources of the

images and annotations in the folder name and in the XML annotation files. For

all statistical analyses that appear in the remaining sections, we will specify which

subset of the database subset was used.
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2.2.3 Content and evolution of the LabelMe database

We summarize the content of the LabelMe database as of December 21, 2006. The

database consists of 111490 polygons, with 44059 polygons annotated using the online

tool and 67431 polygons annotated offline. There are 11845 static pictures and 18524

sequence frames with at least one object labeled.

As outlined above, a LabelMe description corresponds to the raw string entered by

the user to define each object. Despite the lack of constraint on the descriptions, there

is a large degree of consensus. Online labelers entered 2888 different descriptions for

the 44059 polygons (there are a total of 4210 different descriptions when considering

the entire dataset). Figure 2-2(a) shows a sorted histogram of the number of instances

of each object description for all 111490 polygons1. Notice that there are many object

descriptions with a large number of instances. While there is much agreement among

the entered descriptions, object categories are nonetheless fragmented due to plurals,

synonyms, and description resolution (e.g. “car”, “car occluded”, and “car side” all

refer to the same category). In section 2.3.1 we will address the issue of unifying the

terminology to properly index the dataset according to real object categories.

Figure 2-2(b) shows a histogram of the number of annotated images as a function

of the percentage of pixels labeled per image. The graph shows that 11571 pictures

have less than 10% of the pixels labeled and around 2690 pictures have more than

90% of labeled pixels. There are 4258 images with at least 50% of the pixels labeled.

Figure 2-2(c) shows a histogram of the number of images as a function of the number

of objects in the image. There are, on average, 3.3 annotated objects per image over

the entire dataset. There are 6876 images with at least 5 objects annotated. Figure 2-

3 shows images depicting a range of scene categories, with the labeled objects colored

to match the extent of the recorded polygon. For many images, a large number of

objects are labeled, often spanning the entire image.

1A partial list of the most common descriptions for all 111490 polygons in the LabelMe dataset,
with counts in parenthesis: person walking (25330), car (6548), head (5599), tree (4909), window
(3823), building (2516), sky (2403), chair (1499), road (1399), bookshelf (1338), trees (1260), side-
walk (1217), cabinet (1183), sign (964), keyboard (949), table (899), mountain (823), car occluded
(804), door (741), tree trunk (718), desk (656).
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Figure 2-2: Summary of the database content. (a) Sorted histogram of the number of
instances of each object description. Notice that there is a large degree of consensus
with respect to the entered descriptions. (b) Histogram of the number of annotated
images as a function of the area labeled. The first bin shows that 11571 images have
less than 10% of the pixels labeled. The last bin shows that there are 2690 pictures
with more than 90% of the pixels labeled. (c) Histogram of the number of labeled
objects per image.

Figure 2-3: Examples of annotated scenes. These images have more than 80% of their
pixels labeled and span multiple scene categories. Notice that many different object
classes are labeled per image.
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Figure 2-4: Evolution of the online annotation collection over time. Left: total
number of polygons (blue, solid line) and descriptions (green, dashed line) in the
LabelMe dataset as a function of time. Right: the probability of a new description
being entered into the dataset as a function of time. Note that the graph plots the
evolution through March 23rd, 2007 but the analysis in this paper corresponds to
the state of the dataset as of December 21, 2006, as indicated by the star. Notice
that the dataset has steadily increased while the rate of new descriptions entered has
decreased.

The web-tool allows the dataset to continuously grow over time. Figure 2-4 depicts

the evolution of the dataset since the annotation tool went online. We show the

number of new polygons and text descriptions entered as a function of time. For

this analysis, we only consider the 44059 polygons entered using the web-based tool.

The number of new polygons increased steadily while the number of new descriptions

grew at a slower rate. To make the latter observation more explicit, we also show the

probability of a new description appearing as a function of time (we analyze the raw

text descriptions).

2.2.4 Quality of the polygonal boundaries

Figure 2-5 illustrates the range of variability in the quality of the polygons provided

by different users for a few object categories. For the analysis in this section, we

only use the 44059 polygons provided online. For each object category, we sort
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Figure 2-5: Illustration of the quality of the annotations in the dataset. For each
object we show three polygons depicting annotations corresponding to the 25th, 50th,
and 75th percentile of the number of control points recorded for the object category.
Therefore, the middle polygon corresponds to the average complexity of a segmented
object class. The number of points recorded for a particular polygon appears near
the top-left corner of each polygon. Notice that, in many cases, the object’s identity
can be deduced from its silhouette, often using a small number of control points.

the polygons according to the number of control points. Figure 2-5 shows polygons

corresponding to the 25th, 50th, and 75th percentile with respect to the range of

control points clicked for each category. Many objects can already be recognized

from their silhouette using a small number of control points. Note that objects can

vary with respect to the number of control points to indicate its boundary. For

instance, a computer monitor can be perfectly described, in most cases, with just

four control points. However, a detailed segmentation of a pedestrian might require

20 control points.

Figure 2-6 shows some examples of cropped images containing a labeled object

and the corresponding recorded polygon.

2.2.5 Distributions of object location and size

At first, one would expect objects to be uniformly distributed with respect to size and

image location. For this to be true, the images should come from a photographer who

randomly points their camera and ignores the scene. However, most of the images in

the LabelMe dataset were taken by a human standing on the ground and pointing

42



Paper cup

Rock

Statue

Chair

Figure 2-6: Image crops of labeled objects and their corresponding silhouette, as
given by the recorded polygonal annotation. Notice that, in many cases, the polygons
closely follow the object boundary. Also, many diverse object categories are contained
in the dataset.

their camera towards interesting parts of a scene. This causes the location and size

of the objects to not be uniformly distributed in the images. Figure 2-7 depicts, for a

few object categories, a density plot showing where in the image each instance occurs

and a histogram of object sizes, relative to the image size. Given how most pictures

were taken, many of the cars can be found in the lower half region of the images.

Note that for applications where it is important to have uniform prior distribitions of

object locations and sizes, we suggest cropping and rescaling each image randomly.

2.3 Extending the dataset

We have shown that the LabelMe dataset contains a large number of annotated im-

ages, with many objects labeled per image. The objects are often carefully outlined

using polygons instead of bounding boxes. These properties allow us to extract from

the dataset additional information that was not provided directly during the label-

ing process. In this section we provide some examples of interesting extensions of

the dataset that can be achieved with minimal user intervention. Code for these

applications is available as part of the Matlab toolbox.
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Figure 2-7: Distributions of object location and size for a number of object categories
in the LabelMe dataset. The distribution of locations are shown as a 2D histogram of
the object centroid location in the different images (coordinates are normalized with
respect to the image size). The size histogram illustrates what is the typical size that
the object has in the LabelMe dataset. The horizontal axis is in logarithmic units
and represents the percentage of the image area occupied by the object.

2.3.1 Enhancing object labels with WordNet

Since the annotation tool does not restrict the text labels for describing an object

or region, there can be a large variance of terms that describe the same object cat-

egory. For example, a user may type any of the following to indicate the “car”

object category: “car”, “cars”, “red car”, “car frontal”, “automobile”, “suv”, “taxi”,

etc. This makes analysis and retrieval of the labeled object categories more diffi-

cult since we have to know about synonyms and distinguish between object identity

and its attributes. A second related problem is the level of description provided by

the users. Users tend to provide basic-level labels for objects (e.g. “car”, “person”,

“tree”, “pizza”). While basic-level labels are useful, we would also like to extend the

annotations to incorporate superordinate categories, such as “animal”, “vehicle”, and

“furniture”.

We use WordNet [30], an electronic dictionary, to extend the LabelMe descriptions.

WordNet organizes semantic categories into a tree such that nodes appearing along a
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branch are ordered, with superordinate and subordinate categories appearing near the

root and leaf nodes, respectively. The tree representation allows disambiguation of

different senses of a word (polysemy) and relates different words with similar meanings

(synonyms). For each word, WordNet returns multiple possible senses, depending on

the location of the word in the tree. For instance, the word “mouse” returns four

senses in WordNet, two of which are “computer mouse” and “rodent”2. This raises

the problem of sense disambiguation. Given a LabelMe description and multiple

senses, we need to decide what the correct sense is.

WordNet can be used to automatically select the appropriate sense that should

be assigned to each description [43]. However, polysemy can prove challenging for

automatic sense assignment. Polysemy can be resolved by analyzing the context (i.e.

which other objects are present in the same image). To date, we have not found

instances of polysemy in the LabelMe dataset (i.e. each description maps to a single

sense). However, we found that automatic sense assignment produced too many

errors. To avoid this, we allow for offline manual intervention to decide which senses

correspond to each description. Since there are fewer descriptions than polygons (c.f.

Figure 2-4), the manual sense disambiguation can be done in a few hours for the

entire dataset.

We extended the LabelMe annotations by manually creating associations between

the different text descriptions and WordNet tree nodes. For each possible descrip-

tion, we queried WordNet to retrieve a set of senses, as described above. We then

chose among the returned senses the one that best matched the description. Despite

users entering text without any quality control, 3916 out of the 4210 (93%) unique

LabelMe descriptions found a WordNet mapping, which corresponds to 104740 out

of the 111490 polygon descriptions. The cost of manually specifying the associations

is negligible compared to the cost of entering the polygons and must be updated pe-

2The WordNet parents of these terms are (i) computer mouse: electronic device; device; instru-
mentality, instrumentation; artifact, artifact; whole, unit; object, physical object; physical entity;
entity and (ii) rodent: rodent, gnawer, gnawing animal; placental, placental mammal, eutherian,
eutherian mammal; mammal, mammalian; vertebrate, craniate; chordate; animal, animate being,
beast, brute, creature, fauna; organism, being; living thing, animate thing; object, physical object;
physical entity; entity.
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person (27719 polygons) car (10137 polygons)
Label Polygon count Label Polygon count
person walking 25330 car 6548
person 942 car occluded 804
person standing 267 car rear 584
person occluded 207 car side 514
person sitting 120 car crop 442
pedestrian 121 car frontal 169
man 117 taxi 8
woman 75 suv 4
child 11 cab 3
girl 9 automobile 2

Table 2.1: Examples of LabelMe descriptions returned when querying for the objects
“person” and “car” after extending the labels with WordNet (not all of the descrip-
tions are shown). For each description, the counts represents the number of returned
objects that have the corresponding description. Note that some of the descriptions
do not contain the query words.

riodically to include the newest descriptions. Note that it may not be necessary to

frequently update these associations since the rate of new descriptions entered into

LabelMe decreases over time (c.f. Figure 2-4).

We show the benefit of adding WordNet to LabelMe to unify the descriptions

provided by the different users. Table 2.1 shows examples of LabelMe descriptions

that were returned when querying for “person” and “car” in the WordNet-enhanced

framework. Notice that many of the original descriptions did not contain the queried

word. Figure 2-8 shows how the number of polygons returned by one query (after

extending the annotations with WordNet) are distributed across different LabelMe

descriptions. It is interesting to observe that all of the queries seem to follow a similar

law (linear in a log-log plot).

Table 2.2 shows the number of returned labels for several object queries before

and after applying WordNet. In general, the number of returned labels increases

after applying WordNet. For many specific object categories this increase is small,

indicating the consistency with which that label is used. For superordinate categories,

the number of returned matches increases dramatically. The object labels shown in

Table 2.2 are representative of the most frequently occurring labels in the dataset.
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Figure 2-8: How the polygons returned by one query (in the WordNet-enhanced
framework) are distributed across different descriptions. The distributions seem to
follow a similar law: a linear decay in a log-log plot with the number of polygons for
each different description on the vertical axis and the descriptions (sorted by number
of polygons) on the horizontal axis. Table 2.1 shows the actual descriptions for the
queries “person” and “car”.

One important benefit of including the WordNet hierarchy into LabelMe is that

we can now query for objects at various levels of the WordNet tree. Figure 2-9

shows examples of queries for superordinate object categories. Very few of these

examples were labeled with a description that matches the superordinate category,

but nonetheless we can find them.

While WordNet handles most ambiguities in the dataset, errors may still occur

when querying for object categories. The main source of error arises when text

descriptions get mapped to an incorrect tree node. While this is not very common,

it can be easily remedied by changing the text label to be more descriptive. This can

also be used to clarify cases of polysemy, which our system does not yet account for.

2.3.2 Object-parts hierarchies

When two polygons have a high degree of overlap, this provides evidence of either

(i) an object-part hierarchy or (ii) an occlusion. We investigate the former in this

section and the latter in Section 2.3.3.

We propose the following heuristic to discover semantically meaningful object-part
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Animal

seagull squirrel bull horse elephant

Plant

flower cactus tree potted plant bushes palm tree

Food

dish with food orange mustard applepizza

Tool

toolbox knife scissors corkscrew

Figure 2-9: Queries for superordinate object categories after incorporating WordNet.
Very few of these examples were labeled with a description that matches the super-
ordinate category (the original LabelMe descriptions are shown below each image).
Nonetheless, we are able to retrieve these examples.
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Category Original description WordNet description
person 27019 27719

car 10087 10137
tree 5997 7355
chair 1572 2480

building 2723 3573
road 1687 2156

bookshelf 1588 1763
animal 44 887
plant 339 8892
food 11 277
tool 0 90

furniture 7 6957

Table 2.2: Number of returned labels when querying the original descriptions entered
into the labeling tool and the WordNet-enhanced descriptions. In general, the number
of returned labels increases after applying WordNet. For entry-level object categories
this increase is relatively small, indicating the consistency with which the correspond-
ing description was used. In contrast, the increase is quite large for superordinate
object categories. These descriptions are representative of the most frequently occur-
ring descriptions in the dataset.

relationships. Let IO denote the set of images containing a query object (e.g. car)

and IP ⊆ IO denote the set of images containing part P (e.g. wheel). Intuitively,

for a label to be considered as a part, the label’s polygons must consistently have

a high degree of overlap with the polygons corresponding to the object of interest

when they appear together in the same image. Let the overlap score between an

object and part polygons be the ratio of the intersection area to the area of the part

polygon. Ratios exceeding a threshold of 0.5 get classified as having high overlap.

Let IO,P ⊆ IP denote the images where object and part polygons have high overlap.

The object-part score for a candidate label is NO,P/(NP +α) where NO,P and NP are

the number of images in IO,P and IP respectively and α is a concentration parameter,

set to 5. We can think of α as providing pseudocounts and allowing us to be robust

to small sample sizes.

The above heuristic provides a list of candidate part labels and scores indicating

how well they co-occur with a given object label. In general, the scores give good

candidate parts and can easily be manually pruned for errors. Figure 2-10 shows
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examples of objects and proposed parts using the above heuristic. We can also take

into account viewpoint information and find parts, as demonstrated for the car object

category. Notice that the object-parts are semantically meaningful.

Once we have discovered candidate parts for a set of objects, we can assign specific

part instances to their corresponding object. We do this using the intersection overlap

heuristic, as above, and assign parts to objects where the intersection ratio exceeds

the 0.5 threshold. For some robustness to occlusion, we compute a depth ordering

of the polygons in the image (see Section 2.3.3) and assign the part to the polygon

with smallest depth that exceeds the intersection ratio threshold. Figure 2-11 gives

some quantitative results on the number of parts per object and the probability with

which a particular object-part is labeled.

2.3.3 Depth ordering

Frequently, an image will contain many partially overlapping polygons. This situation

arises when users complete an occluded boundary or when labeling large regions

containing small occluding objects. In these situations we need to know which polygon

is on top in order to assign the image pixels to the correct object label. One solution

is to request depth ordering information while an object is being labeled. Instead, we

wish to reliably infer the relative depth ordering and avoid user input.

The problem of infering depth ordering for overlaping regions is a simpler prob-

lem than segmentation. In this case we only need to infer who owns the region of

intersection. We summarize a set of simple rules to decide the relative ordering of

two overlapping polygons:

• Some objects are always on the bottom layer since they cannot occlude any

objects. For instance, objects that do not own any boundaries (e.g. sky) and

objects that are on the lowest layer (e.g. sidewalk and road).

• An object that is completely contained in another one is on top. Otherwise, the

object would be invisible and, therefore, not labeled. Exceptions to this rule

are transparent or wiry objects.
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Figure 2-10: Objects and their parts. Using polygon information alone, we automat-
ically discover object-part relationships. We show example parts for the building,
person, mountain, sky, and car object classes, arranged as constellations, with the
object appearing in the center of its parts. For the car object class, we also show
parts when viewpoint is considered.
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Figure 2-11: Quantitative results showing (a) how many parts an object has and (b)
the likelihood that a particular part is labeled when an object is labeled. Note that
there are 29 objects with at least one discovered part (only 15 are shown here). We
are able to discover a number of objects having parts in the dataset. Also, a part will
often be labeled when an object is labeled.

• If two polygons overlap, the polygon that has more control points in the region

of intersection is more likely to be on top. To test this rule we hand-labeled

1000 overlapping polygon pairs randomly drawn from the dataset. This rule

produced only 25 errors, with 31 polygon pairs having the same number of

points within the region of intersection.

• We can also decide who owns the region of intersection by using image fea-

tures. For instance, we can compute color histograms for each polygon and the

region of intersection. Then, we can use histogram intersection [84] to assign

the region of intersection to the polygon with the closest color histogram. This

strategy achieved 76% correct assignments over the 1000 hand-labeled overlap-

ping polygon pairs. We use this approach only when the previous rule could

not be applied (i.e. both polygons have the same number of control points in

the region of intersection).

Combining these heuristics resulted in 29 total errors out of the 1000 overlapping

polygon pairs. Figure 2-12 shows some examples of overlapping polygons and the
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Figure 2-12: Each image pair shows an example of two overlapping polygons and
the final depth-ordered segmentation masks. Here, white and black regions indicate
near and far layers, respectively. A set of rules (see text) were used to automatically
discover the depth ordering of the overlapping polygon pairs. These rules provided
correct assignments for 97% of 1000 polygon pairs tested. The bottom right example
shows an instance where the heuristic fails. The heuristic sometimes fails for wiry or
transparent objects.

final assignments. The example at the bottom right corresponds to an error. In cases

in which objects are wiry or transparent, the rule might fail. Figure 2-13 shows the

final layers for scenes with multiple overlapping objects.

2.3.4 Semi-automatic labeling

Once there are enough annotations of a particular object class, one could train an algo-

rithm to assist with the labeling. The algorithm would detect and segment additional

instances in new images. Now, the user task would be to validate the detection [97].

A successful instance of this idea is the Seville project [3] where an incremental,

boosting-based detector was trained. They started by training a coarse detector that

was good enough to simplify the collection of additional examples. The user provides

feedback to the system by indicating when a bounding box was a correct detection or

a false alarm. Then, the detector was trained again with the enlarged dataset. This

process was repeated until a satisfactory number of images were labeled.

We can apply a similar procedure to LabelMe to train a coarse detector to be

used to label images obtained from online image indexing tools. For instance, if we

want more annotated samples of sailboats, we can query both LabelMe (18 segmented
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Figure 2-13: Decomposition of a scene into layers given the automatic depth ordering
recovery of polygon pairs. Since we only resolve the ambiguity between overlapping
polygon pairs, the resulting ordering may not correspond to the real depth ordering
of all the objects in the scene.

examples of sailboats were returned) and online image search engines (e.g. Google,

Flickr, and Altavista). The online image search engines will return thousands of

unlabeled images that are very likely to contain a sailboat as a prominent object.

We can use LabelMe to train a detector and then run the detector on the retrieved

unlabeled images. The user task will be to select the correct detections in order to

expand the amount of labeled data.

Here, we propose a simple object detector. Although objects labeled with bound-

ing boxes have proven to be very useful in computer vision, we would like the output of

the automatic object detection procedure to provide polygonal boundaries following

the object outline whenever possible.

• Find candidate regions: instead of running the standard sliding window, we

propose creating candidate bounding boxes for objects by first segmenting the

image to produce 10-20 regions. Bounding boxes are proposed by creating all

the bounding boxes that correspond to combinations of these regions. Only the

combinations that produce contiguous regions are considered. We also remove

all candidate bounding boxes with aspect ratios outside the range defined by
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(a) Sailboats from the LabelMe dataset (b) Detection and segmentation

Figure 2-14: Using LabelMe to automatically detect and segment objects depicted
in images returned from a web search. a Sailboats in the LabelMe dataset. These
examples are used to train a classifier. b Detection and segmentation of a sailboat
in an image downloaded from the web using Google. First, we segment the image
(upper left), which produces around 10 segmented regions (upper right). Then we
create a list of candidate bounding boxes by combining all of the adjacent regions.
Note that we discard bounding boxes whose aspect ratios lie outside the range of the
LabelMe sailboat crops. Then we apply a classifier to each bounding box. We depict
the bounding boxes with the highest scores (lower left), with the best scoring as a
thick bounding box colored in red. The candidate segmentation is the outline of the
regions inside the selected bounding box (lower right). After this process, a user may
then select the correct detections to augment the dataset
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(a) Images returned from online search engines with the query ‘sailboat’

   Images sorted after training with LabelMe

(b) Images returned from online search engines with the query ‘dog’

   Images sorted after training with LabelMe
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Figure 2-15: Enhancing web-basd image retrieval using labeled image data. Each
pair of rows depict sets of sorted images for a desired object category. The first row
in the pair is the ordering produced from an online image search using Google, Flickr
and Altavista (the results of the three search engines are combined respecting the
ranking of each image). The second row shows the images sorted according to the
confidence score of the object detector trained with LabelMe. To better show how
the performance decreases with rank, each row displays one out of every ten images.
Notice that the trained classifier returns better candidate images for the object class.
This is quantified in the graphs on the right, which show the precision (percentage
correct) as a function of image rank.
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the training set. This results in a small set of candidates for each image (around

30 candidates).

• Compute features: resize each candidate region to a normalized size (96 ×

96 pixels). Then, represent each candidate region with a set of features (e.g.

bag of words [67], edge fragments [64], multiscale-oriented filters [61]). For

the experiments presented here, we used the Gist features [61] (code available

online) to represent each region.

• Perform classification: train a support vector machine classifier [96] with a

Gaussian kernel using the available LabelMe data and apply the classifier to

each of the candidate bounding boxes extracted from each image. The output

of the classifier will be a score for the bounding boxes. We then choose the

bounding box with the maximum score and the segmentation corresponding to

the segments that are inside the selected bounding box.

For the experiments presented here, we queried four object categories: sailboats,

dogs, bottles, and motorbikes. Using LabelMe, we collected 18 sailboat, 41 dog,

154 bottle, and 49 motorbike images. We used these images to train four classifiers.

Then, we downloaded 4000 images for each class from the web using Google, Flickr

and Altavista. Not all of the images contained instances of the queried objects. It

has been shown that image features can be used to improve the quality of the ranking

returned by online queries [32, 11]. We used the detector trained with LabelMe to

sort the images returned by the online query tools.

Figure 2-15 shows the results and compares the images sorted according to the

ranking given by the output of the online search engines and the ranking provided

by the score of the classifier. For each image we have two measures: (i) the rank

in which the image was returned and (ii) the score of the classifier corresponding to

the maximum score of all the candidate bounding boxes in the image. In order to

measure performance, we provided ground truth for the first 1000 images downloaded

from the web (for sailboats and dogs). The precision-recall graphs show that the

score provided by the classifier provides a better measure of probability of presence
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Figure 2-16: Examples of automatically generated segmentations and bounding boxes
for sailboats, motorbikes, bottles, and dogs.

of the queried object than the ranking in which the images are returned by the

online tools. However, for the automatic labeling application, good quality labeling

demands very good performance on the object localization task. For instance, in

current object detection evaluations [25], an object is considered correctly detected

when the area of overlap between the ground truth bounding box and the detected

bounding box is above 50% of the object size. However, this degree of overlap will not

be considered satisfactory for labeling. Correct labeling requires above 90% overlap

to be satisfactory.

After running the detectors on the 4000 images of each class collected from the

web, we were able to select 162 sailboats, 64 dogs, 40 bottles, and 40 motorbikes

that produced good annotations. This is shown in Figure 2-16. The user had the

choice to validate the segmentation or just the bounding box. The selection process

is very efficient. Therefore, semi-automatic labeling may offer an interesting way of

efficiently labeling images.

However, there are several drawbacks to this approach. First, we are interested

in labeling full scenes with many objects, making the selection process less efficient.

Second, in order for detection to work with a reasonable level of accuracy with current

methods, the object needs to occupy a large portion of the image or be salient.

Third, the annotated objects will be biased toward being easy to segment or detected.

Note that despite semi-automatic labeling not being desirable for creating challenging

benchmarks for evaluating object recognition algorithms, it can still be useful for

training. There are also a number of applications that will benefit from having access
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Dataset # categories # images # annotations Annotation type

LabelMe 183 30369 111490 Polygons
Caltech-101 [28] 101 8765 8765 Polygons
MSRC [102] 23 591 1751 Region masks
CBCL-Streetscenes [13] 9 3547 27666 Polygons
Pascal2006 [25] 10 5304 5455 Bounding boxes

Table 2.3: Summary of datasets used for object detection and recognition research.
For the LabelMe dataset, we provide the number of object classes with at least 30
annotated examples. All the other numbers provide the total counts.

to large amounts of labeled data, including image indexing tools (e.g. Flickr) and

photorealistic computer graphics [80]. Therefore, creating semi-automatic algorithms

to assist image labeling at the object level is an interesting area of application on its

own.

2.4 Comparison with existing datasets for object

detection and recognition

We compare the LabelMe dataset against four annotated datasets currently used for

object detection and recognition: Caltech-101 [28], MSRC [102], CBCL-Streetscenes [13],

and PASCAL2006 [25]. Table 2.3 summarizes these datasets. The Caltech-101 and

CBCL-streetscenes provide location information for each object via polygonal bound-

aries. PASCAL2006 provides bounding boxes and MSRC provides segmentation

masks.

For the following analysis with the LabelMe dataset, we only include images that

have at least one object annotated and object classes with at least 30 annotated

examples, resulting in a total of 183 object categories. We have also excluded, for the

analysis of the LabelMe dataset, contributed annotations and sequences.

Figure 2-17(a) shows, for each dataset, the number of object categories and, on

average, how many objects appear in an image. Notice that currently the LabelMe

dataset contains more object categories than the existing datasets. Also, observe that

the CBCL-Streetscenes and LabelMe datasets often have multiple annotations per
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image, indicating that the images correspond to scenes and contain multiple objects.

This is in contrast with the other datasets, which prominently feature a small number

of objects per image.

Figure 2-17(b) is a scatter plot where each point corresponds to an object category

and shows the number of instances of each category and the average size, relative to

the image. Notice that the LabelMe dataset has a large number of points, which

are scattered across the entire plot while the other datasets have points clustered

in a small region. This indicates the range of the LabelMe dataset: some object

categories have a large number of examples (close to 10K examples) and occupy a

small percentage of the image size. Contrast this with the other datasets where

there are not as many examples per category and the objects tend to occupy a large

portion of the image. Figure 2-17(c) shows the number of labeled instances per object

category for the five datasets, sorted in decreasing order by the number of labeled

instances. Notice that the line corresponding to the LabelMe dataset is higher than

the other datasets, indicating the breadth and depth of the dataset.

We also wish to quantify the quality of the polygonal annotations. Figure 2-17(d)

shows the number of polygonal annotations as a function of the number of control

points. The LabelMe dataset has a wide range of control points and the number of

annotations with many control points is large, indicating the quality of the dataset.

The PASCAL2006 and MSRC datasets are not included in this analysis since their

annotations consist of bounding boxes and region masks, respectively.

2.5 Conclusion

We described a web-based image annotation tool that was used to label the identity of

objects and where they occur in images. We collected a large number of high quality

annotations, spanning many different object categories, for a large set of images, many

of which are high resolution. We presented quantitative results of the dataset contents

showing the quality, breadth, and depth of the dataset. We showed how to enhance

and improve the quality of the dataset through the application of WordNet, heuristics
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Figure 2-17: Comparison of five datasets used for object detection and recognition:
Caltech-101 [26], MSRC [102], CBCL-Streetscenes [13], PASCAL2006 [25], and La-
belMe. (a) Number of object categories versus number of annotated objects per
image. (b) Scatter plot of number of object category instances versus average an-
notation size relative to the image size, with each point corresponding to an object
category. (c) Number of labeled instances per object category, sorted in decreasing
order based on the number of labeled instances. Notice that the LabelMe dataset
contains a large number of object categories, often with many instances per category,
and has annotations that vary in size and number per image. This is in contrast to
datasets prominently featuring one object category per image, making LabelMe a rich
dataset and useful for tasks involving scene understanding. (d) Depiction of annota-
tion quality, where the number of polygonal annotations are plotted as a function of
the number of control points (we do not show the PASCAL2006 and MSRC datasets
since their annotations correspond to bounding boxes and region masks, respectively).
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to recover object parts and depth ordering, and training of an object detector using

the collected labels to increase the dataset size from images returned by online search

engines. We finally compared against other existing state of the art datasets used for

object detection and recognition.

Our goal is not to provide a new benchmark for computer vision. The goal of the

LabelMe project is to provide a dynamic dataset that will lead to new research in

the areas of object recognition and computer graphics, such as object recognition in

context and photorealistic rendering.
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Chapter 3

Discovering objects and their

location in images

3.1 Introduction

Common approaches to object recognition involve some form of supervision, for which

the labeled dataset developed in Chapter 2 is very helpful. For example, in face

detection, the location or boundary outline is provided [72, 98]. Recent work on multi-

class object recognition involves specifying the object identity for cropped images

containing a single object [33, 101] or providing keywords that name the objects

contained in a given image [7, 6].

While such supervision is valuable, there are two main drawbacks: (i) To effec-

tively learn about all of the intra-class variation that an object class contains and to

avoid overfitting, we need a large amount of labelled training data, as seen in Chap-

ter 2. (ii) Providing annotations may introduce unforeseen biases. Furthermore, when

we sit down to provide labeled data, we encounter the question, What is an object

anyway?

Keeping in mind that the number of available images is several orders of magnitude

larger than those with annotations, the above observations lead us to ask the question,

Is it possible to learn visual object classes simply from looking at images? In an

attempt to answer this question, we will apply probabilistic models that have been
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used in the natural language processing community to discover interesting topics in

a corpus of text documents. To apply these models, we will need a way to convert an

image to a text document1. We will develop the notion of a visual word by quantizing

local appearance descriptors [20, 78] that are found at interest points in an image and

adjusted for affine invariance [56, 58, 71]. In this chapter, we primarily investigate

the Latent Dirichlet Allocation (LDA) model [15] and compare with the very similar

probabilistic Latent Semantic Analysis (pLSA) model [39, 40] (see [76, 77] for more

details and results for pLSA).

For tractability reasons, both of these models make the simplifying assumption

that words in a given document are exchangable, that is, the spatial relationship

between words are ignored. This is also known as the bag-of-words assumption. While

this assumption seems to throw away a lot of useful information, the two models cope

with the loss of information in the text domain because certain words are highly

discriminitive and because of the redundancy of natural language.

For the visual domain, at first glance it seems that we cannot effectively exploit

regularity as in the natural language domain since spatial relationships are just as

crucial as local features themselves to detecting and recognizing objects. However,

the local appearance descriptors that we use have been used for matching regions in

two separate images [53] and have been shown to be quite discriminitive and able

to encode complex visual stimuli. Furthermore, the affine-invariant regions detected

by the interest point operators overlap significantly, as shown in Figure 3-10(b) and

hence provide much redundancy. The overlap also preserves spatial information since

a reshuffling of the pixels will yield different interest points and descriptors.

In addition to discovering topics, we also show how to localize objects in a given

image using the detected visual words. While these visual words provide surprising

top-down segementations, we attempt to improve the results by introducing an addi-

tional vocabulary, which we call doublets, that is formed from spatially neighboring

word pairs. We show that doublets provide a somewhat cleaner segmentation of the

objects in an image.

1This need of converting images to text documents will compel us to refer to images as documents.
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Several researchers have proposed mining large visual datasets to cluster multiple

instances of objects. Examples include discovering main characters [34] and other

prominent objects and scenes [79] in movies or mining famous people in collections of

news photographs [10]. While these are related tasks, to our knowledge, we are among

the first to convincingly answer whether it is possible to learn visual object classes

simply from looking at images. There has been other recent work that is similar to

ours [65, 87, 5].

In Section 3.2, we describe the process of extracting visual words from an image.

We also describe the doublets representation. In Section 3.3, we give an overview of

various models used to recover the semantics of a corpus of text documents. In par-

ticular, we will describe the unigram, mixture of unigrams, pLSA, and LDA models.

We will also describe the inference procedure for LDA and compare with the similar

pLSA. In Section 3.4, we show outputs after applying the topic discovery models

to images. We look at visual words that are highly representative of the discovered

topics, cluster images that are all best described by a learned topic, classify unseen

images given the learned topics, and show localization of the discovered objects in

images. In Section 3.5, we conclude. The results in this chapter were developed in

collaboration with Josef Sivic, Alyosha Efros, Andrew Zisserman, and William Free-

man and appeared at the 2005 International Conference on Computer Vision [77] and

also as an MIT AI Lab technical report [76].

3.2 Obtaining Visual Words

In this section, we will outline how to obtain visual words so that an image can

be converted to a document. We will describe two types of visual words: vector-

quantized SIFT features [53] obtained through two different interest point detectors

and pairs of words called doublets that loosely encode spatial relationships. With

these visual words, we can then apply the topic discovery models to the data.
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3.2.1 Vector-Quantized SIFT Features

We seek a vocabulary of visual words that will be insensitive to changes in viewpoint

and illumination. To achieve this, we use vector quantized SIFT descriptors [53]

computed on affine covariant regions [56, 58, 71]. Affine covariance gives tolerance

to viewpoint changes. SIFT descriptors, which histograms the response of local ori-

ented filters applied at various scales over a nonoverlapping spatial grid, gives some

tolerance to illumination changes. Vector quantizing these descriptors gives tolerance

to morphology within an object category. Others have used similar descriptors for

object classification [20, 62], but in a supervised setting.

Two types of affine covariant regions are computed for each image. The first is

constructed by elliptical shape adaptation about an interest point. The method is

described in [58, 71]. The second is constructed using the maximally stable proce-

dure of Matas et al. [56] where areas are selected from an intensity watershed image

segmentation. For both of these we use the binaries provided at [2]. Both types of re-

gions are represented by ellipses. These are computed at twice the originally detected

region size in order for the image appearance to be more discriminating.

Each ellipse is mapped to a circle by appropriate scaling along its principal axes

and a SIFT descriptor is computed. There is no rotation of the patch, i.e. the de-

scriptors are rotation variant (alternatively, the SIFT descriptor could be computed

relative to the the dominant gradient orientation within a patch, making the descrip-

tor rotation invariant [53]; since this invariance gives slightly worse performance, we

do not carry out this procedure in this work). The SIFT descriptors are then vector

quantized into visual words for the vocabulary. The vector quantization is carried out

by k-means clustering, which finds around 300K regions. The training regions are

extracted from a random subset (about one third of each category) of images of air-

planes, cars, faces, motorbikes and backgrounds (see Expt. (2) in section 3.4). About

1K clusters are used for each of the Shape Adapted and Maximally Stable regions,

and the resulting total vocabulary has 2,237 words. The number of clusters, k, is

clearly an important parameter. The intention is to choose the size of k to determine
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words which give some intra-class generalization. This vocabulary is used for all the

experiments throughout this thesis.

3.2.2 Doublet Visual Words

If we histogram visual words, we lose the spatial relationship between different regions

of the image. We seek to increase the spatial specificity of object description while at

the same time allowing for configurational changes. We thus augment our vocabulary

of words with doublets – pairs of visual words that co-occur within a local spatial

neighborhood (c.f. we call visual words singlets). In this new representation, for a

vocabulary of size V , the codebook has on the order of V xV entries (we remove

permutations). For ease the computational burden, we only form doublets for 100

singlet codebook entries. We choose the 100 singlet words that best represent a

discovered topic, which will be described in Section 3.3.2.

We find doublets in images by considering each visual word. If a given visual

word belongs to the top set of 100 singlets, we look for another visual word to form

a pair. To avoid trivial doublets (those with both visual words in the same location),

we discard those visual words with ellipses having significant overlap. We then form

doublets from all pairs of the remaining words that are within five nearest neighbors

of each other.

We prefer pairs of visual words with ellipses of similar sizes. We find these by mul-

tiplying the distance between the two visual word centroids by the ratio of the larger

to smaller major ellipse axis of the two visual word ellipses. Figure 3-1 illustrates

the geometry and formation of the doublets. Figures 3-10(d),(e) show examples of

doublets on a real image.

3.3 Models for Discovering Latent Topics

We have shown how to convert images to look like text documents through the use

of the visual words representation. We now wish to analyze the images and discover

object categories. In this section, we describe models that have been used in the text
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Figure 3-1: The doublet formation process. We augment the visual word representa-
tion by counting the co-occurrence of pairs of codebook entries. We find doublet pairs
by considering each visual word in an image. For a target visual word (depicted in
the center in black), we consider nearby visual words. We discard those visual words
that significantly overlap with the target visual word. Moreover, we give preference
to visual words that are the same size as the target visual word. In this case, the two
dotted red ellipses are discarded and the green ones (of the same size) are paired.

understanding community to discover latent topics.

3.3.1 Unigram and Mixture of Unigrams Models

Histogramming the words that appear in a document provides a summary of its con-

tents. We can also summarize an entire corpus of documents in this manner. This is

known as a unigram model. By histogramming an entire corpus of N documents, each

containing Mi words, the unigram model recovers the parameters of the probability

distribution p(wij|φ) over the words wij in a document. If the histogram is normal-

ized, then the distribution is assumed to be a multinomial. This model is depicted in

Figure 3-2(a) as a graphical model [46]. We use plate notation, where nodes inside a

plate are duplicated by the counts in the top corner of the plate.

While the unigram model provides a summary of the corpus’ contents, its de-

scriptive ability is quite limited. The reason is that a corpus will contain documents

covering a range of topics. Arranging words into documents provides some structure

to separate the different topics. This is because an author of a document will not

write about all possible topics, but only a few. By histogramming all of the words

in a document corpus, the words corresponding to the latent topics are all jumbled

together. We therefore lose the ability to the words that best describe the topics.

We can augment the unigram model by assuming that a document’s author writes

about only one topic. This model is called the mixture of unigrams model and is
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Figure 3-2: (a) Unigram model. There is only one topic for the entire corpus, which
is described by a single set of mixing weights over the vocabulary. (b) Mixture of
unigrams model. This model assumes that there are multiple global topics, each
with their own mixing weights over the vocabulary, and that each document can
be described by a single topic. The words are distributed conditioned on the topic.
However, this proves to be too limiting for describing a corpus of documents. (c)
pLSA model of Hofmann [39]. In this model, each document may be described by
multiple topics, with each document having separate mixing weights for the different
topics. (d) LDA model of [14]. This model is a generative model and incorporates
the same augmented features for text as pLSA. However, this model has several nice
advantages over pLSA, which we describe in the text. Both pLSA and LDA can be
viewed as performing a low-rank matrix factorization over the latent topics, which we
depict in (e). More specifically, words in a document are histogrammed as a column
vector (p(wij|di)), with the documents in the corpus arranged as a matrix (shown on
the left). pLSA and LDA can both recover two matrices: the set of mixing weights
over the vocabulary for the topics (p(wij|zij)) and the set of mixing weights over the
topics for each document (p(zij|di)).
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depicted in Figure 3-2(b). We assume that there are K topics, each having its own

mixing weights for the words that comprise the topic. Each document is assigned

to one of the latent topics, with its topic assignment indicated by zi. Learning and

inference for this model is straightforward as it is similar to a mixture model.

3.3.2 The pLSA and LDA Models

While the mixture of unigrams model proves successful for documents comprising

a single topic, it runs into problems on documents containing multiple topics. The

reason for this is similar to why a unigram model over a corpus fails to learn about

topics: since words in a document are constrained to belong to a single topic, the

words belonging to different topics are jumbled together. Since multiple-topic doc-

uments are common and arise naturally (such as this thesis), this problem must be

addressed.

We augment the mixture of unigrams model to allow each word in a document

to belong to a different topic. In this way, we allow the documents to be composed

of multiple topics. We consider two models that achieve this: probabilistic Latent

Semantic Analysis (pLSA) [39] and Latent Dirichlet Allocation (LDA) [14].

The pLSA model is shown in Figure 3-2(c). The pLSA model recovers two prob-

ability distributions: p(zij |di) for document di and p(wij|zij , φ). Both of these distri-

butions are assumed to be multinomial. The first distribution allows separate topic

mixing weights for each document, while the second distribution is shared across all

documents.

The LDA model is depicted in Figure 3-2(d). The LDA model is a proper gener-

ative model, where:
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θi|α ∼ Dirichlet(α) (3.1)

φk|β ∼ Dirichlet(β) (3.2)

zij |θi ∼ θi (3.3)

wij |zij = k, φ ∼ φk (3.4)

As with pLSA, LDA assumes that each document has its own distribution over topics

p(zij |θi) and topic distributions p(wij|zij , φ) shared across all documents.

The LDA generative model also results from application of De Finetti’s theo-

rem [21]. Since documents are represented by histograms of words, we toss out the

ordering of the words. Since a random permutation of the words in a document re-

sults in the same histogram, the words in the document are said to be exchangeable.

This is also known as the bag of words assumption. Moreoever, an infinite sequence

of random variables (in this case words) is said to be infinitely exchangeable if the

joint distribution of all finite subsequences are exchangeable. De Finetti’s theorem

states that an infinitely exchangeable infinite sequence of random variables is inde-

pendently and identically distributed conditioned on a random parameter, which in

turn is drawn from another distribution. In the finite case, this means:

p(wi, zi|α) =

∫

p(θi|α)

Mi
∏

j=1

p(zij|θi) p(wij|zij) dθi (3.5)

Notice that this is proportional to the generative model in Figure 3-2(d).

Notice that the data likelihood term for pLSA is:

p(wij|di) ∝
K

∑

k=1

p(wij|zij = k) p(zij = k|di) (3.6)

and for LDA:

p(wij) ∝
K

∑

k=1

p(wij|zij = k, φk) p(zij = k|θi) (3.7)
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Both models sum over the latent topic assignments zij . Hence, we can view pLSA

and LDA as performing a constrained low-rank matrix factorization, as depicted

in Figure 3-2(e). The document histograms are stacked as columns in a matrix,

as depicted on the left. pLSA and LDA recover matrices corresponding to mixing

weights over the vocabulary words for the topics (p(wij|zij)) and mixing weights over

the topics for each document (p(zij |di). This view of the models relates them to low

rank factorization methods for recovering the semantic structure of text, as pioneered

by Latent Semantic Analysis (LSA) [22].

While the pLSA and LDA are powerful models for text, one limitation is the

requirement to choose the number of topics K to discover. While this is usually not a

problem, it does require a priori knowledge of the data. However, a Bayesian extension

of the LDA model, the Hierarchical Dirichlet Process [85], or minimum complexity

methods [8] can be used to automatically infer the number of topics implied by a

corpus. We do not investigate this problem for the remainder of this thesis.

3.3.3 Inference for pLSA and LDA

We are interested in recovering the mixing weight over words for the latent topics that

appear in the corpus. For pLSA, this means that we wish to recover both p(wij |zij)

and p(zij |di) that maximizes p(w|d). We can do this via expectation maximization

(EM), as outlined in [39]. In our implementation, we observed convergence in 40–100

iterations, with each iteration taking approximately 2.3 seconds. This was tested on

4K images with 7 fitted topics and ∼300 non-zero words counts per image using a

Matlab implementation on a 2GHz PC. For more details, see [77].

For LDA, we marginalize over the topic distributions for each document. Bayesian

inference can be achieved by variational expectation maximization [14], expectation

propagation [59], or Gibbs sampling [36]. For this work, we utilize the Gibbs sampler,

which we now describe.

We wish to find the set of mixing weights over words that maximizes the following

posterior distribution:
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φ∗ ∈ argmax
φ

p(φ|w, α, β) = argmax
φ

∑

z

p(φ|w, z, α, β) p(z|w, α, β) (3.8)

≈ argmax
φ

S
∑

s=1

p(φ|w, zs, α, β) (3.9)

≈ argmax
φ

max
s={1,...,S

p(φ|w, zs, α, β) (3.10)

where zs ∼ p(z|w, α, β) are samples drawn from a posterior distribution over z. The

samples z are drawn in succession for each word, conditioned on topic assignments

for the remaining words:

zij ∼ p(zij = k|wij = v, w\(ij), z\(ij), α, β) (3.11)

∝
(

N
\(ij)
ik + αk

)(

N
\(ij)
kv + βv

)

(3.12)

where \(ij) indicates that we exclude example (ij) from consideration, N
\(ij)
ik is the

number of words assigned to topic k in document i (excluding the topic assignment of

zij), and N
\(ij)
kv is the number times vocabulary word v is assigned to topic k. Notice

that computationally, we simply need to keep track of these two counts and update

them for each new sample.

We recover the parameters φ as:

φk ∝ Nkv + βv (3.13)

where Nkv is the total number of times vocabulary word v is assigned to topic k.

To infer the latent mixing weight over topics for a given document:

θi ∝ Nik + αk (3.14)

where Nik is the number of time topic k was assigned in document i.

Finally, we can compute the posterior probability of a topic assignment given the
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learned parameters φ and inferred weights θi:

p(zij = k|wij = v, θi, φk) ∝ θik φkv (3.15)

This distribution will be handy later when we attempt to localize a discovered object

category in an image.

For our implementation, we set the hyperparameters to be symmetric as in [36],

where αk = 0.5 and βv = 0.5 for all topics k and vocabulary words v. The hyper-

paramters essentially perform Laplacian smoothing by controlling the mixing of the

multinomial weights (lower values give less mixing). This prevents degeneracy for the

case where there are no observed words for a given topic. We run the Gibbs sampler

10 times with 100 iterations (every zij is sampled in each iteration) for each run. For

each run, we randomly assign the initial topic settings. We compute the latent para-

meters based on the sample zs that gives the highest posterior probability p(z|w, α, β)

across the 10 runs. Empirically, the sampler reaches a plateau of the posterior after

approximately 50 iterations, with each iteration taking a few seconds on a 2GHz PC

running a Matlab implementation.

3.3.4 Comparison of pLSA and LDA

While both pLSA and LDA allow for topic assignments to individual words, there

are nonetheless noteworthy differences between the two models. First, the pLSA

model indexes the documents in the training set. This causes pLSA to not be a

generative model and has the undesirable effect of not being able to directly model

unseen documents. The LDA model does not suffer from this. To ameliorate this, a

folding-in heuristic must be used where the learned weights over words are held fixed

and the topic weights for the new documents are inferred. Second, while the LDA

model marginalizes over the mixing weights for topics in documents, pLSA requires

direct computation of the mixing weights for both the topics and words. This causes

overfitting when the two models are applied to unseen documents, as observed in

[14, 59]. pLSA uses a heuristics, such as tempering, to smooth the learned parameters.
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See [14] for a more detailed analysis of these effects.

3.4 Experiments

In this section, we analyze the outputs of the LDA topic discovery model when ap-

plied to the visual words representation of images. For our analysis, we explore four

interesting tasks: (i) understanding the outputs of the LDA model by looking at the

visual words that best describe the discovered visual topics, (ii) clustering the input

images based on the likelihood of their membership to the topics, (iii) classification

of unseen images that are outside of the input image set using the visual topics, and

(iv) localization of the discovered visual topics within images.

We will see that the visual topics will often correspond to object categories or types

of texture. To ensure that we understand the topics that are discovered, we consider

image sets for which we know the desired visual topics. We consider the Caltech 101

dataset [27, 33] and the MIT Objects and Scenes dataset [91]. The Caltech dataset

contains 101 different object categories with one category prominently featured in a

given image. This dataset contains large intra-category variation. The MIT dataset

is more difficult as it contains multiple object categories in a given image. Example

images from both of these datasets and a description of the preprocessing on these

images are shown in Figure 3-3. We will show results on these two datasets and

compare with the output from pLSA and a baseline k-means method.

Baseline Method – K-means (KM) To understand the contributions of the topic

discovery model to the system performance, we also implemented an algorithm that

finds clusters based on the word frequency vector for each image (i.e. we compute a

vector wi of length V that is the normalized histogram count of the visual words for a

given image). This is very similar to the mixture of unigrams model (c.f. Section 3.3.1)

except that we assume p(wi|zi) is Gaussian distributed where zi is the topic assignment

for the document. The standard k-means procedure is used to determine K clusters

from the word frequency vectors by hard-assigning each document to exactly one
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Examples from Caltech 101

Examples from MIT Objects and Scenes

Figure 3-3: We pool images from five object categories from the Caltech 101 dataset
(top row). The categories and number of images used are: faces, 435; motorbikes,
800; airplanes, 800; cars rear, 1155; background (indoor and outdoor scenes around
the Caltech campus), 900. We chose to experiment with these categories since they
offer the greatest number of examples per category, thereby increasing the chance
of success. All images have been converted to grayscale before processing. No other
alterations were made with the exception of removing a white border around a number
of motorbike images since this was providing an artifactual cue. The MIT Objects and
Scenes dataset (bottom row) contains 2,873 images and indoor and outdoor scenes,
with annotations consisting of polygonal outlines. Again, these images were converted
to grayscale before processing.

cluster based on the Euclidean distance of the feature vector to the cluster center.

3.4.1 Topic Discovery

We carry out two experiments of increasing complexity and recover the visual words

that correspond to the discovered topics. For each experiment, we specify the number

of topics to discover and then fit an LDA model to the data. To visualize the visual

words that correspond to each discovered topic, we use the recovered φ multinomial

parameters, as given in Equation 3.13, to display those words with high probability

for a given topic.

Expt. (1) Images of four object categories with cluttered backgrounds.

We use images from the faces, motorbikes, airplanes, and cars rear object categories
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from the Caltech 101 dataset. All four of these categories have cluttered backgrounds

and vary significantly in scale (especially in the case of car rear). Figure 3-4 shows the

two top visual words for each of the discovered topics when K = 4. Notice that the

top words for each discovered topic correspond to semantically meaningful regions for

the four object categories (e.g. eyes for faces, wheel parts for motorbikes, nose tips

for airplanes, and license plates for cars rear). It appears that we are discovering the

four object categories!

Expt. (2) Images of four object categories plus “background” category.

We add to Expt. (1) the set of background images from the Caltech 101 dataset. We

increase the number of topics to account for the newly added background images.

We visualize the background image set by fitting an LDA model with K = 3 to the

set of background images. We show the most likely visual words (based on φ) for

each discovered topic in Figure 3-5. These visual words illustrate the type of scenes

contained in the dataset.

3.4.2 Clustering Images

Since it appears that we are discovering topics corresponding to object categories,

we would like to assign each image to one of the discovered topics. We do this by

using the recovered θ multinomial parameters, as given in Equation 3.14, to assign

each document to the topic with the highest probability. To evaluate the goodness of

these assignments, we compute a confusion matrix, where each column corresponds

to an object category and whose entries indicate the distribution of the images to the

different topics. For example, if there are C object categories in the image set and K

topics are discovered, then the resulting confusion matrix will be of dimension KxC

with columns summing to one. An ideal confusion matrix, up to some permutation of

the rows, is the identity matrix. For a given confusion matrix, we show an intensity

plot of the matrix for the best permutation of the rows and report the average along

the diagonal and the number of images that appear off of the diagonal.

Figure 3-6 shows confusion matrices and Table 3.1 shows summary statistics for
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(a)

(b)

(d)

(c)

Figure 3-4: The two most likely words (shown by 5 examples in a row) for four learned
topics in Expt. (1): (a) Faces, (b) Motorbikes, (c) Airplanes, (d) Cars.

78



(a)

(b)

(c)

Figure 3-5: The most likely words (shown by 5 examples in a row) for the three
background topics learned in Expt. (2): (a) mainly local feature-like structure (b)
mainly corners and edges coming from the office/building scenes, (c) mainly textured
regions like grass and trees.
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Expt. (1) as the number of topics K is increased from 4 to 7. For K = 4, we get

an almost perfect assignment score for the four categories. As the number of topics

is increased, certain object categories seem to cluster into subtopics. This seems to

happen mostly with the motorbike and car rear object categories. Upon looking at the

clustered images, we find that these subtopics correspond to motorbikes containing

background versus no background and the car rear set containing multiple examples

of two cars from a video sequence. These discovered subtopics agree well with the

structure of the data.

Figure 3-7 and Table 3.1 show confusion matrices and summary statistics for

Expt. (2) as K is increased from 5 to 7. Notice that for both this and the earlier

experiments, both LDA and pLSA models significantly outperform the baseline k-

means method and that there is little difference in the LDA and pLSA performance.

For LDA, there is some confusion between the background and the desired object

categories. For example, for K = 5 a significant number of background images are

incorrectly assigned as faces. Another example is for K = 7 where some motorbikes

and cars are incorrectly assigned to background topics. This seems to occur because,

as noted above, many images contain a mixture of visual words corresponding to

foreground and background. Examples include faces occurring in office scenes and

cars appearing in road scenes.

To remedy this situation, we provide a small amount of supervision by learning an

LDA model for half of the background images (450 images in total) with K = 3 and

then, while holding the recovered φ parameters fixed, learn another LDA model with

K = 7 on the remaining images. This has the effect of decorrelating the foreground

and background visual words since the background category will be described by the

first set of parameters and the remaining parameters will explain the four object

categories.

Figure 3-7 and Table 3.1 show the improvement in the confusion matrix and

summary statistics. Again, there is little difference in performance between this semi-

supervised version of LDA and an equivalent version of pLSA (described in [77]).
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Expt. Categories T LDA pLSA KM baseline
% # % # % #

(1) 4 4 97 86 98 70 72 908

(2) 4 + bg 5 78 931 78 931 56 1820
(2)* 4 + bg 6 84 656 76 1072 – –
(2)* 4 + bg 7 78 1007 83 768 – –
(2)* 4 + bg-fxd 7 90 330 93 238 – –

Table 3.1: Confusion matrix summary statistics of the experiments comparing LDA,
pLSA, and the k-means baseline method. The ‘%’ column is the average along the
diagonal of the confusion matrix corresponding to a given experiment and the ‘#’
column is the number of misclassified images. For the case of (2)*, the two/three
background topics are allocated to one category. See the text and Figures 3-6 and 3-
7 for more details. Notice that both LDA and pLSA have comparable results and
outperforms the baseline k-means method.
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Figure 3-6: LDA confusion tables for Expt. (1) and increasing number of topics dis-
covered (K=4,5,6,7). Brightness indicates number, with the ideal being bright down
the diagonal. The rows/columns correspond from top/left to bottom/right as faces,
motorbikes, airplanes, and cars rear. Notice that we learn interesting “subtopics” in
the car and motorbike categories. For the motorbike case, these subtopics correspond
to motorbikes with or without background. For the cars, there appears to be a couple
of particular cars with many repeated examples in the dataset, with topics assigned
to these cases.
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Figure 3-7: Confusion tables for Expt. (2) for LDA (top row) and for pLSA (bottom
row). The number of discovered topics is increased from K = 5 to K = 7, with the
last column depicting K = 7 and fixed background parameters. Brightness indicates
number, with the ideal being bright down the diagonal. The rows/columns correspond
from top/left to bottom/right as faces, motorbikes, airplanes, cars rear, and the set
of background images. Notice how we remove some of the confusion between the
background images and that we discover background “subtopics” when we increase
the K.
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LDA
True Class → Faces Motorbikes Airplanes Cars rear

Topic 1 - Faces 97.70 0.50 3.75 1.00
Topic 2 - Motorbikes 1.38 96.50 2.25 0.00
Topic 3 - Airplanes 0.00 0.75 93.00 0.00
Topic 4 - Cars rear 0.92 2.25 1.00 99.00

Table 3.2: Confusion matrices for unseen test images in Expt. (3) for LDA. The
test images comprise examples from four object categories (there are no background
images). Notice that there is little confusion between the different categories.

pLSA
True Class → Faces Motorbikes Airplanes Cars rear

Topic 1 - Faces 99.54 0.25 1.75 0.75
Topic 2 - Motorbikes 0.00 96.50 0.25 0.00
Topic 3 - Airplanes 0.00 1.50 97.50 0.00
Topic 4 - Cars rear 0.46 1.75 0.50 99.25

Table 3.3: Confusion matrices for unseen test images in Expt. (3) for pLSA. The
test images comprise examples from four object categories (there are no background
images). Notice that there is little confusion between the different categories.

3.4.3 Classifying New Images

After fitting an LDA model to a corpus of images, we can use the learned φ parameters

to classify unseen images. We describe two experiments to investigate this.

Expt. (3) Training images of four object categories plus “background”

category. We compare our performance with the supervised method of Fergus et

al. [33]. We train an LDA model with K = 7 on half of the images of the four

object categories plus all of the background images. We then test on the remaining

images belonging to the object categories and assign them to the learned object topics

(we ignore the background topics when performing the assignments). The resulting

confusion matrix is shown in Tables 3.2 and 3.3. Notice that there is little confusion

for LDA and pLSA.

Expt. (4) Binary classification of category against background. We inves-

tigate binary classification of unseen images containing objects versus unseen back-
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LDA pLSA Fergus et al. [33]
Object categ. (a) (b) (a) (b)

Faces 17.3 7.8 5.3 3.3 3.6
Motorbikes 17.5 9.9 15.4 8.0 6.7
Airplanes 4.8 2.5 3.4 1.6 7.0
Cars rear* 21.3 / 11.6 18.2 / 8.5 21.4 / 11.9 16.7 / 7.0 9.7

Table 3.4: Equal error rates for the classification task of object versus background
for LDA, pLSA, and [33]. The object category test images were classified against (a)
the set of 500 testing background images (this test was performed in [33]) and (b)
the set of testing background images and testing images of all other object categories.
The small confusion between the different categories explains the improvement in
performance in column (b). (*) For the cars rear category, we classify against a
separate set of background images consisting of road scenes (as in [33]). For training,
we experimented with using 400/900 background images respectively.

ground images and compare with [33]. For training, we use the same set of images

containing objects as in Expt. (3) but use only 400 (out of 900) background images.

We then fit an LDA model with K = 7 on this set of images. The test set (the

remaining images containing objects and the 500 background images) is used to pro-

duce ROC curves for each discovered object topic. We report the equal error rates

(the point where the probability of detecting the object category equals one minus

the false alarm rate) for LDA, pLSA, and [33] in Table 3.4. For the cars rear cate-

gory, to be comparable with [33], for testing we classify against a separate set of road

scenes. Also, for the cars rear category, we experimented with training on all of the

background images. Notice that LDA and pLSA obtains comparable performance

with [33] even though we do not supply any training labels for the images.

3.4.4 Obtaining a Weak Segmentation

We now consider scoring each visual word that appears in a particular image. We

can do this with the posterior probability given in Equation 3.15. Figure 3-8 shows

two images whose visual words have probability greater than 0.88 of belonging to

a particular topic (we used the model trained in Expt. (2) with K = 7 and the

parameters of 3 background topics pre-learned and held fixed). For both examples,

it appears that the topic labels assigned to the visual words align nicely with the
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(a) (b)

(d)(c)
Figure 3-8(a),(b) Figure 3-8(c),(d)

Topic P (z|θ) # regions P (z|θ) # regions

1 Faces (yellow) 0.25 81 0.00 0
2 Motorbikes (green) 0.02 0 0.00 0
3 Airplanes (black) 0.00 0 0.01 0
4 Cars rear (red) 0.00 0 0.66 84
5 Backg I (magenta) 0.02 0 0.32 14
6 Backg II (cyan) 0.00 0 0.01 0
7 Backg III (blue) 0.70 522 0.00 0

(e)

Figure 3-8: Image as a mixture of visual topics (Expt. (2)) using 7 learned topics with
fixed background parameters). (a),(c) Original images. (b),(d) Images as mixtures
of visual topics. Visual words with topic posterior given in Equation 3.15 greater
than 0.88 are shown. In total, there are 926 and 391 elliptical regions in the top
and bottom row images respectively. A key to the colors is given in (e) along with
the number of visual words assigned to each topic and the probability of each topic
occuring in the two images. Notice that the displayed visual words agree well with
the object categories.
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different regions of the image, producing a weak segmentation of the image.

To evaluate the goodness of the segmentations, we use a set of ground-truth

bounding boxes for the set of face images [24] and compute a score that measures the

percentage of overlap between the ellipses used for segmentation and the bounding

box:

ρi =
Bi ∩ Ei

Bi ∪ Ei

(3.16)

where Bi is the set of pixels inside the bounding box for image i and Ei is the set of

pixels inside all of the ellipses used for segmenting the face in image i. We compute a

score ρ over all of the face images by taking the average of the ρi. For all of displayed

segmentations in this chapter that has the set of face images in the training corpus, we

set the threshold for diplaying a word (e.g. 0.88 above) to be the one that empirically

maximizes this score. For the segmentation experiment above, we get ρ = 0.50.

It seems quite remarkable that we are able to get a segmentation with the bag-

of-words assumption since all spatial structure between the words is thrown away.

However, it is important to note that the words themselves and the overlap that

occurs between neighboring words seem to retain much of the spatial structure of the

desired objects (i.e. we would probably get a completely different result if the pixels

were randomly shuffled).

Notice that Equation 3.15 depends not only on the probability of a visual word

occuring in a particular topic, but also on the probability of that topic occuring in

the given image. This allows us to overcome the phenomena of polysemy. In the text

domain, polysemy occurs when a word has two different meanings (e.g. ‘bank’ as in

(i) a money keeping institution, or (ii) a river side). Figure 3-9 shows an example

of a visual word with relatively high probability in two different topics. For these

examples, the words are assigned to the correct topics for the segmentation task.

Expt. (5) Image segmentation for faces. We now investigate how doublets

can improve image segmentation. To illustrate this clearly, we experiment with only

the face and background images. We learn a set of parameters for the background
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(a)

(b)

Figure 3-9: Example of a polysemic visual word (this word has high probability in
two different topics). Each row depicts examples of the visual word occurring in two
different topics. For the segmentation task, we are able to overcome polysemy since
the probability that a given visual word in an image belongs to a topic, as given
in Equation 3.15, depends on the likelihood of the topic occurring in the image in
addition to the likelihood of the visual word occurring in the topic. For each of these
examples, the word was assigned to the correct topic and hence induced the correct
segmentation.

class by fitting an LDA model with K = 3 on half of the background images (400

images in total). We then fit an LDA model with K = 4 on the faces and remaining

background images with the learned background parameters held fixed. A doublet

vocabulary is then formed from the top 100 visual words for the face topic using the

inferred φ parameters. We then combine the original vocabulary (cf singlets) and

the new doublet vocabulary and repeat the above steps using the new vocabulary to

fit an LDA model for K = 4 with fixed background parameters. We initially fit an

LDA model on the singlet vocabulary to reduce the size of the doublet vocabulary.

Figure 3-10 shows examples of doublets and compares the resulting segmentation

using singlets versus doublets. Notice that we get a somewhat cleaner segmentation

with doublets. Furthermore, the percentage of overlap increases from ρ = 0.51 for

singlets to ρ = 0.56 for doublets.

If we perform Expt. (2) and form doublets from the top 100 words in all of the

non-background topics using pre-learned fixed parameters for the background, then

the overlap score decreases to ρ = 0.51. This suggests that there is some benefit in

topic-specific doublets.
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(a)

(d)

(b)

(e)

(c)

(f)

Figure 3-10: Improving object segmentation. (a) The original frame with ground
truth bounding box. (b) All 416 detected elliptical regions superimposed on the image.
(c) Resulting segmentation after fitting an LDA model to the “singlet” visual words
in Expt. (5). (d) and (e) show examples of ‘doublets’. (f) Segmentation obtained
using doublets. Notice that we get a cleaner segmentation using doublets. For (c)
and (f) respectively, the threshold that we use for displaying the singlets is 0.89 and
doublets is 0.70.

Notice the level of supervision to achieve this segmentation: the images are an

unordered mix of faces and backgrounds. It is not necessary to label which is which,

yet both the face objects and their segmentation are learned. The supervision pro-

vided is the number of topics K to learn and the separate set of background images

to pre-learn the background topics.

Expt. (6) Image Segmentation on the MIT Dataset. We consider the entire

MIT Objects and Scenes dataset. We fit an LDA model with K = 10 and form

doublets using the top 40 visual words from each topic according to the recovered φ

parameters. A second LDA model is fitted using the combined singlet and doublet

vocabulary. Figures 3-11 and 3-12 show examples of segmentations induced by 4

of the 10 learned topics. These topics, more so than the rest, have a clear semantic

interpretation, and cover objects such as computers, buildings, trees, and bookshelves.
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Notice that the results clearly demonstrate that: (i) images can be accessed by the

multiple objects they contain (in contrast to GIST [61], for example, which classifies

an entire image); (ii) the topics induce segmentations of multiple instances of objects

in each image.

3.5 Conclusions

We demonstrated that it is possible to learn visual object classes simply by looking. To

do this, we described the Latent Dirichlet Allocation model and showed how to convert

images to the text domain by means of vector-quantized SIFT features and doublets,

which form a vocabulary of visual words. For a given set of unlabelled images, we

discovered meaningful object parts and clustered the images into the appropriate

object classes with high reliability (cf. Table 3.1). We were able to improve the

results for those objects that caused confusion by training on side data, then fixing

the learned topic parameters, and finally learning the remaining parameters on the

rest of the dataset.

We reproduced the experiments of [33] using a set of training images to fit an

LDA model and then using the learned parameters to classify a set of unseen images.

For the training phase, we did not provide any class labels; we only specified the

number of topics to discover. We obtained very competitive performance without

much supervision.

Finally, we showed that we are able to localize objects remarkably well, in spite

of the bag-of-words assumption, using those visual words with the highest posterior

probability. Since this posterior depends on the likelihood of an object class occurring

in an image in addition to the likelihood of a visual word occurring in an object class,

we showed that this allows us to overcome polysemy. We improved the segmentation

results by incorporating the doublet visual words.
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(a)

(b)

(d)

(c)

Figure 3-11: Example segmentations induced by four (out of 10) discovered topics
on the MIT dataset. Examples from the first 20 most probable images for each topic
are shown. For each topic the top row shows the original images and the bottom row
shows visual words (doublets) belonging to that particular topic in that image. Note
that we can give semantic interpretation to these topics: (a) covers computers; (b)
covers building regions; (c) covers bookshelves; (d) covers trees and grass.
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Figure 3-12: Example segmentations on the MIT dataset for the 10 topic decompo-
sition. Left: the original image. Middle: all detected regions superimposed. Right:
the topic induced segmentation. The topics depicted are from Figure 3-11. The color
key is: a-cyan, b-red, c-magenta, d-green. Notice that each image is segmented into
several ‘topics’.
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Chapter 4

Using Multiple Segmentations to

Discover Objects

and their Extent in Image

Collections

4.1 Introduction

In Chapter 3 we posed the question, given a Gargantuan number of images, “Is it

possible to learn visual object classes simply from looking at images?”. That is, if our

data set contains many instances of visually similar object classes, can we discover

these object classes? In this chapter we extend this question to “Is it possible to learn

visual object classes and their segmentations simply from looking at images?”

To automatically discover objects in an image collection, two very challenging

issues must be addressed: (i) how to recognize visually similar objects; and (ii) how

to segment them from their background. But, in a sense, both object recognition and

image segmentation can be thought of as parts of one large grouping problem within

the space of an entire dataset. Given a stack of all images in the dataset, groups

representing similar objects can be seen as volumes in that stack. Projecting such
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Figure 4-1: Problem summary. Given a set of input images (first column), we wish
to discover object categories and infer their spatial extent (e.g. cars and buildings:
final two columns). We compute multiple segmentations per image (a subset is de-
picted in the second through fifth columns; all of the segmentations for the first row
are shown in Figure 4-3). The task is to sift the good segments from the bad ones for
each discovered object category. Here, the segments chosen by our method are shown
in green (buildings) and yellow (cars).

volumes onto a particular image gives segmentation; projecting onto the image index

gives recognition. Our aim here is to couple object-based matching/recognition and

image-based segmentation into a general grouping framework.

To be concrete, the problem that we wish to solve is the following: given a large

dataset of images (containing multiple instances of several object classes), retrieve

segmented instances grouped into object classes. The hope is that this will recover

commonly occurring object classes in the dataset (e.g. cars, buildings). Our approach

is to first obtain multiple segmentations of each image, and to make the assumption

that each object instance is correctly segmented by at least one segmentation. The

problem is then reduced to finding coherent groups of correctly segmented objects

within this large “soup” of candidate segments, i.e. one of grouping in the space of

candidate image segments. Our approach is illustrated in figure 4-1.

In Section 4.2 we give motivation for combining segmentation with the topic dis-

covery models of Chapter 3. In Section 4.3, we provide reasons for producing multiple

segmentations on images for our task. In Section 4.4, we describe the overall algo-

rithm. We also describe a way of choosing good segments that are representative of

the discovered topics. In Section 4.5, we provide qualitative and quantitative results

for our approach. In Section 4.6 we conclude. The results in this chapter were devel-

93



oped in collaboration with Alyosha Efros, Josef Sivic, William Freeman, and Andrew

Zisserman and appeared at the 2006 Conference on Computer Vision and Pattern

Recognition [67].

4.2 Grouping visual words

One major issue noticed by several groups [65, 77], is that the “visual words” are not

always as descriptive as their text counterparts. While some visual words do capture

high-level object parts, (e.g. wheels, eyes, airplane wingtips), many others end up

encoding simple oriented bars and corners and might more appropriately be called

“visual phonemes” or even “visual letters”.

Moreover, there is a proportion of visual synonyms – several words describing

the same object or object part, and, more problematically, visual polysemy – the

same word describing several different objects or object parts. The problem of visual

polysemy becomes apparent when we consider how an image is represented in the

“bag of words” document model. All visual words in an image are placed into a

single histogram, losing all spatial and neighborhood relationships. Suppose a car

is described by ten visual words. Does the presence of these ten words in an image

imply that it contains a car? Not necessarily, since these ten words did not have to

occur together spatially, but anywhere in the image. Of course, if the object and

its background are highly correlated (e.g. cars and roads or cows and grass), then

modeling the entire image can actually help recognition. However, this is unlikely to

scale as we look at a large number of object classes. Therefore, what we need is a

way to group visual words spatially [32, 83] to make them more descriptive.

4.3 Multiple segmentation approach

In this chapter we propose to use image segmentation as a way to utilize visual

grouping cues to produce groups of related visual words. In theory, the idea sounds

simple: compute a segmentation of each image so that each segment corresponds to
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a coherent object. Then cluster similar segments together using the “bag of words”

representation. However, image segmentation is not a solved problem. It is naive to

expect a segmentation algorithm to partition an image into its constituent objects – in

the general case, you need to have solved the recognition problem already! In practice,

some approaches, like Mean-shift [19], perform only a low-level over-segmentation of

the image (superpixels). Others, like Normalized Cuts [75] attempt to find a global

solution, but often without success (however, see Duygulu et al. [23] for a clever joint

use of segments and textual annotations).

Recently, Hoiem et al. [42] have proposed a surprisingly effective way of utilizing

image segmentation without suffering from its shortcomings. For each image, they

compute multiple segmentations by varying the parameters of the segmenting algo-

rithm. Each of the resulting segmentations is still assumed to be wrong – but the

hope is that some segments in some of the segmentations will be correct. For exam-

ple, consider the images in figures 4-1 and 4-3. None of the segmentations are entirely

correct, but most objects get segmented correctly at least once. This idea of main-

taining multiple segmentations until further evidence can be used to disambiguate is

similar to the approach of Borenstein et al. [16].

The problem now becomes one of going through a large “soup” of (overlapping)

segments and trying to discover the good ones. But note that, in a large image

dataset with many examples of the same object, the good segments (i.e. the ones

containing the object) will all be represented by a similar set of visual words. The

bad segments, on the other hand, will be described by a random mixture of object-

words and background-words. To paraphrase Leo Tolstoy [88]: all good segments

are alike, each bad segment is bad in its own way. This is the main insight of the

paper: segments corresponding to objects will be exactly the ones represented by

coherent groups (topics), whereas segments overlapping object boundaries will need

to be explained by a mixture of several groups (topics). We exploit this insight in the

object discovery algorithm described next.
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Given a large, unlabeled collection of images:

1. For each image in the collection, compute multiple candidate segmentations, e.g.
using Normalized Cuts [75] (section 4.4.1).

2. For each segment in each segmentation, compute a histogram of “visual
words” [78] (section 3.2).

3. Perform topic discovery on the set of all segments in the image collection (using
Latent Dirichlet Allocation [14]), treating each segment as a document (sec-
tion 3.3.2).

4. For each discovered topic, sort all segments by how well they are explained by
this topic (section 4.4.2).

Figure 4-2: Algorithm overview.

4.4 The Algorithm

Given a large, unlabeled collection of images, our goal is to automatically discover

object categories with the objects segmented out from the background. Our algorithm

is summarized in figure 4-2.

The result is a set of discovered topics, where the top-ranked discovered segments

correspond to the objects within that topic. The rest of the section will describe the

novel steps of the algorithm in detail.

4.4.1 Generating multiple segmentations

Our aim is to produce sufficient segmentations of each input image to have a high

chance of obtaining a few “good” segments that will contain potential objects. There

are approaches in the literature for sampling likely segmentations [94] and multiscale

segmentations [74]. But since we are not relying on the full segmentation to be

correct, the particular choice of a segmentation algorithm is not that critical. Indeed,

the fact that segmentation algorithms are not particularly stable as one perturbs their

parameters is exactly what we use to obtain a variety of different segmentations.

We have chosen the Normalized Cuts framework [75], because it aims to produce

a global segmentation with large segments that have a chance to be objects. The

affinity metric we use is the intervening contour cue based on the texture-suppressing
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boundary detector of Martin et al. [55]. To produce multiple segmentations, we varied

two parameters of the algorithm: the number of segments K and the size of the input

image. We typically set K = 3, 5, 7, 9 segments and applied these settings at 2 image

scales: 50- and 100-pixels across (for the LabelMe dataset, we also used K = 11, 13

and for the MSRC dataset we added a third scale at 150-pixels across). This results

in up to 12 different segmentations per image, for a total of up to 96 (overlapping)

segments. Figure 4-3 shows the set of resulting segmentations for sample images.

4.4.2 Sorting the soup of segments

We wish to find good segments within each topic. We sort the segments by the

similarity of the visual word distribution (normalized histogram) within each segment

to the learned multinomial weights φk for a given topic k. Let φs be the multinomial

parameter describing the visual word distribution within a segment. We sort the

segments based on the Kullback-Leibler (KL) divergence D(p(w|s, φs)||p(w|z, φk))

between the two distributions over visual words.

Figure 4-3 shows discovered objects segmented out of the image. We also show

the generated multiple segmentations and have weighted each segment based on their

KL divergence score. Notice that often there is a tight segmentation of the discovered

objects.

4.5 Results

In this section, we show qualitative results on several datasets and report quantitative

results on two tasks: (i) the retrieval task, where we wish to evaluate whether or not

the top ranked images for a particular topic contain the discovered object; and (ii)

the segmentation task, where we wish to evaluate the quality of object segmentation

and the proportion of well-segmented highly-ranked objects.

Image datasets: We investigated three datasets: Caltech [33], MSRC [102], and

LabelMe. A summary of the object categories and number of images used appears
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in Table 4.1. We tested on progressively more difficult datasets. For the Caltech set,

we used four object categories – the ‘Caltech four’ of [33] – each containing a single

instance appearing in flat or cluttered background, and a set of background images.

The MSRC set contains 23 object and scene categories. Many of the objects in this

set are prominently featured and located close to the center of the image. There

are also many images containing multiple objects, with some that are occluded. The

LabelMe dataset is a more difficult collection of scene images where the objects are

not controlled and appear in their natural habitat. For this set, we queried for images

containing cars, trees, and buildings. The query resulted in 1554 images, containing

many other additional objects.

Figures 4-4 through 4-7 show montages of segments for each topic, sorted by

their KL divergence score. Note that for each discovered category, the objects are

reasonably segmented and are consistent. The depicted segments each come from a

different image to avoid showing multiple segments of the same object.

To assess the contributions of the different steps of the algorithm, we evaluate: (a)

the proposed algorithm (of Figure 4-2), (b) swapping the LDA model for the simpler

pLSA model to evaluate the contribution of the Dirichlet prior over the multinomial

weights, (c) using only a single segmentation for each image (in conjunction with the

LDA model) to evaluate the contribution of computing multiple segmentations for

each image, (d) our previous method [77], where we use no segmentation at all and

each image is treated as a separate document, with the object extent determined by

the union of visual words having high posterior probability (greater than 0.5) for a

particular topic. For all tests, each method was run 10 times and the run with the

highest likelihood was used.

Image retrieval performance is evaluated on the MSRC database, where labels

indicating object presence/absence are available. The evaluation is performed for

four objects: ‘bicycles’, ‘cars’, ‘signs’ and ‘windows’. For the proposed method (a),

top ranked images for corresponding topics are shown in Figure 4-6. Precision-recall

curves were computed and the average precision is reported in Table 4.2 for the tested

methods.
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For ‘bicycles’ and ‘windows’, the proposed method performs on par or better than

the other methods. Method (d), where no segmentation is used, performs best on

‘cars’ because it is learning about other objects in the scene that overlap significantly

with the target object (e.g. roads). These other objects predict well the presence and

location of the target object for the tested dataset. This effect may also explain why

method (c), which uses a coarse segmentation, performs better on ‘signs’. Method (b)

performs significantly worse than the other methods. We believe this is due to pLSA

overfitting the data, because of the lack of a Dirichlet prior on the document-topic

coefficients [14]. In our earlier work [77], we did not observe a significant difference

in performance between pLSA and LDA. This might be due to the smaller number

of topics and documents used. Our earlier work had only about 4K documents and

4-7 topics, whereas in this work we have about 200K documents and 25 topics.

The segmentation accuracy is evaluated on the LabelMe dataset, where ground

truth object segmentation was labelled for each tested method on the top twenty

returned images for topics covering four objects: ‘buildings’, ‘cars’, ‘roads’ and ‘sky’.

Let R and GT be respectively the set of pixels in the retrieved object segment and the

ground truth segmentation of the object. The performance score ρ measures the area

correctly segmented by the retrieved object segment. It is the ratio of the intersection

of GT and R to the union of GT and R, i.e. ρ = GT∩R
GT∪R

. If more than one ground

truth segmentation intersects R, then we use the one that results in the highest score.

The score is then averaged over the top 20 retrieved object segments. The results are

summarized in table 4.3.

Our method scores about the same or better than the other methods on ‘roads’

and ‘sky’ objects. Methods (b) and (c) perform better on ‘building’ and ‘car’ objects

respectively. Note that this comparison takes into account only the top 20 segments

for each method and does not measure the number of top-ranked high quality seg-

ments. For the ‘car’ object, we have closely inspected the results of methods (a)

and (c). While the quality of segmentations is worse in the top 20 returned images,

the proposed method (a) outperforms single segmentation LDA (c) over the top 500

returned images (the proposed method returns about 15% more high quality seg-
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Dataset # of images # of categories

Caltech [33] 4,090 4 + background
MSRC [102] 4,325 23 object and scene categories
LabelMe 1,554 cars, buildings, trees
Google Maps [1] 4,096 satellite imagery of Boston

Table 4.1: Summary of datasets used in this paper.

Method bicycles cars signs windows

(a) Mult. seg. LDA 0.69 0.77 0.43 0.74
(b) Mult. seg. pLSA 0.67 0.28 0.34 0.57
(c) Sing. seg. LDA 0.67 0.73 0.46 0.72
(d) No seg. LDA 0.64 0.85 0.40 0.74
(e) Chance 0.06 0.12 0.04 0.15

Table 4.2: Average precisions for the tested methods on several objects from the
MSRC dataset.

Method buildings cars roads sky

(a) Mult. seg. LDA 0.53 0.21 0.41 0.77
(b) Mult. seg. pLSA 0.59 0.09 0.16 0.77
(c) Sing. seg. LDA 0.55 0.29 0.32 0.65
(d) No. seg. LDA 0.47 0.16 0.14 0.16

Table 4.3: Segmentation score for the tested methods on several objects with ground
truth labels from the LabelMe dataset. See text for a description of the segmentation
score.

ments). This suggests that using multiple segmentations generates more high quality

segments in the dataset.

4.6 Conclusion

By combining multiple candidate segmentations with probabilistic document analysis

methods, we have developed an algorithm that finds and segments visual topics within

an unlabeled collection of images. The discovered topics relate closely to object

classes within the training set, such as cars, bicycles, faces, signs, trees, and windows.

(In comparison with the recent results of Winn et al. [103], we should note that

ours are obtained completely automatically from a large corpus of unlabeled images,
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whereas theirs are computed from a small set of single-object-category images.) These

results show the power of classical segmentation methods augmented with the power

of modern document analysis methods.
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Figure 4-3: How multiple candidate segmentations are used for object discovery. The
top left image of every pair of rows is the input image, which is segmented using
Ncuts at different parameter settings into 12 different sets of candidate regions. The
explanatory power of each candidate region is evaluated as described in the text;
we illustrate the resulting rank by the brightness of each region. The image data
of the top-ranked candidate region is shown in the bottom left, confirming that the
top-ranked regions usually correspond to objects.
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Figure 4-4: Top segments for 4 topics (out of 10) discovered in the Caltech dataset.
Note how the discovered segments, learned from a collection of unlabelled images,
correspond to motorbikes, faces, and cars.

103



Figure 4-5: Top segments for 4 (out 20) topics discovered in the LabelMe dataset.
Note how the discovered segments, learned from a collection of unlabeled images,
correspond to cars, buildings, and two types of trees.
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Figure 4-6: Top 21 segments for 6 topics (out of 25) discovered in the MSRC dataset.
Note how the discovered segments, learned from a collection of unlabeled images,
correspond to cars, bicycles, signs, windows, grass, and sky categories, respectively.
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Figure 4-7: Top 25 segments for 9 topics (out of 25) discovered on a set of city
satellite images extracted from Google Maps [1]. Notice how we discover different
city structures, such as roads, buildings, and houses.
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Chapter 5

Object Recognition by Scene

Alignment

5.1 Introduction

The recognition of objects in a scene often consists of matching representations of im-

age regions to an object model while rejecting background regions. Recent examples

of this approach include aligning pictorial cues [31], shape correspondence [9], and

modeling the constellation of parts [33]. Other models, exploiting knowledge of the

scene context in which the objects reside, have proven successful in boosting object

recognition performance [89, 93, 83, 41, 66]. These methods model the relationship

between scenes and objects and allow information transfer across the two.

Here, we exploit scene context using a different approach: we formulate the object

detection problem as one of aligning elements of the entire scene to a large database

of labeled images. The background, instead of being treated as a set of outliers, is

used to guide the detection process. Our approach relies on the observation that

when we have a large enough database of labeled images, we can find with high

probability some images in the database that are very close to the query image in

appearance, scene contents, and spatial arrangement [37, 90]. Since the images in the

database are partially labeled, we can transfer the knowledge of the labeling to the

query image. Figure 5-1 illustrates this idea. With these assumptions, the problem
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of object detection in scenes becomes a problem of aligning scenes. The main issues

are: (1) Can we find a big enough dataset to span the required large number of scene

configurations? (2) Given an input image, how do we find a set of images that aligns

well with the query image? (3) How do we transfer the knowledge about objects

contained in the labels?

desk 3

mouse 1
keyboard 2

mousepad 2 

(a) Input image (b) Images with similar scene 

      configuration

(c) Output image with object

     labels transferred

screen 2

Figure 5-1: Overview of our system. Given an input image, we search for images
having a similar scene configuration in a large labeled database. The knowledge
contained in the object labels for the best matching images is then transfered onto
the input image to detect objects. Additional information, such as depth-ordering
relationships between the objects, can also be transferred.

The LabelMe dataset (c.f. Chapter 2) is well-suited for this task, having a large

number of images and labels spanning hundreds of object categories. Recent studies

using non-parametric methods for computer vision and graphics [90, 37] show that

when a large number of images are available, simple indexing techniques can be used

to retrieve images with object arrangements similar to those of a query image.

The core part of our system is the transfer of labels from the images that best

match the query image. We assume that there are commonalities amongst the labeled

objects in the retrieved images and we cluster them to form candidate scenes. These

scene clusters give hints as to what objects are depicted in the query image and their

likely location. We describe a relatively simple generative model for determining

which scene cluster best matches the query image and use this to detect objects.

The remaining sections are organized as follows: In Section 5.2, we describe our

representation for scenes and objects. We formulate a model that integrates the in-

formation in the object labels with object detectors in Section 5.3. In Section 5.4,
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we extend this model to allow clustering of the retrieved images based on the object

labels. We show experimental results of our system output in Section 5.5, and con-

clude in Section 5.6. The results in this chapter were developed in collaboration with

Antonio Torralba, Ce Liu, Rob Fergus, and William T. Freeman and appeared at the

2007 Conference on Neural Information Processing Systems [68].

5.2 Matching Scenes and Objects with the Gist

Feature

We describe the gist feature [61], which is a low dimensional representation of an image

region and has been shown to achieve good performance for the scene recognition task

when applied to an entire image. To construct the gist feature, an image region is

passed through a Gabor filter bank comprising 4 scales and 8 orientations. The image

region is divided into a 4x4 non-overlapping grid and the output energy of each filter

is averaged within each grid cell. The resulting representation is a 4 × 8 × 16 = 512

dimensional vector. Note that the gist feature preserves spatial structure information

and is similar to applying the SIFT descriptor [54] to the image region.

5.2.1 Evaluation of the Gist Feature

We motivate the choice of the gist feature by evaluating performance on the scene

recognition task. We use a dataset [61, 29, 47] consisting of 15 scene categories used

in previous scene recognition work. We compare the gist feature against three other

features: (1) raw color pixels (using SSD to compare scenes), (2) bag of words [29]

sampled densely over a regular grid on the image (note that spatial information is

lost), (3) pyramid matching [47], which uses histograms of visual words that are

computed over different regions of the image in order to keep information about

the spatial organization of the image. For the classification task, we train a support

vector machine (SVM) [96] using SVM-light [45] for each scene class over the different

features. In all cases, we use a radial basis kernel.
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Object           area   Training

class     ROC  samples 

face  0.99  200

pole  0.99  357

grass   0.99  407

trunk  0.99  766

head  0.98  190

car  0.98  8620

screen  0.98  1166

bottle   0.98  221

tree  0.98  4248

building  0.97  5635

sky  0.96  3411

keyboard  0.96  567

mouse  0.96  315

traffic   0.96  283

person  0.96  2933

doorway  0.95  1079

window  0.94  4240

road  0.94  2198
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(a) Scene recognition (b) Object recogntion

Figure 5-2: (a) Comparison of gist [61], raw color pixels, bag of words [29], and
pyramid matching [47] performance on the scene recognition task. Notice that fea-
tures incorporating spatial information perform best (gist, pyramid matching, which
perform similarly across the 15 scene categories). The average performance for the
different feature sets are gist: 71%, raw color pixels: 34.6%, bag of words: 64.1%,
and pyramid matching: 74%. (b) Object recognition using gist features as a function
of training set size. We enumerate the performance for a few object categories in the
table and show a scatter plot for all of the object categories tested. Notice that the
performance increases as more training data is available.
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Figure 5-2(a) shows the performance of the different features on the scene recog-

nition task1. We use 100 images from each scene class for training and the remaining

images for testing (as in [47]). The raw intensities perform very poorly. The features

that perform best are those that incorporate spatial structure into the representa-

tion (gist and pyramid matching), resulting in similar performance across the scene

categories. The performance of the gist on this task provides motivation for its use

throughout this work, although the system is flexible and can accomodate any other

feature set.

Given the success of the gist feature applied to entire images for scene recognition,

we may also consider applying gist to smaller image patches to recognize objects. To

investigate recognition when the object location is known, we utilized the object labels

from the LabelMe dataset to extract tight bounding box crops around the objects.

More specifically, we evaluate performance on object categories with at least 100

labeled examples. We use 50 examples per object class for testing and the remainder

for training. To avoid over-fitting, we ensure that the images in the test set were

taken in locations different from the training set. The amount of training samples

per object class varies greatly, with some classes having over 5000 examples. For

classification, we train an SVM classifier for each class with a radial basis kernel.

Figure 5-2(b) shows recognition results for the gist feature. We show classification

performance (area under ROC) as a function of the amount of training data. Notice

that when the training set size is small, there is high variance in the performance

across the different categories. Some objects need more training samples in order

to generalize to new instances. Other classes can be learned with very few training

samples (e.g. traffic signs) as they are very regular in visual appearance. When there

are many training samples, recognition performance tends to be good.
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Figure 5-3: Retrieval set images. Each row depicts an input image (on the left) and
30 images from the LabelMe dataset [70] that best match the input image using the
gist feature [61] and L1 distance (the images are sorted by their distances in raster
order). Notice that the retrieved images generally belong to similar scene categories.
Also the images contain mostly the same object categories, with the larger objects
often matching in spatial location within the image. Many of the retrieved images
share similar geometric perspective.
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5.2.2 Finding Retrieval Sets

We consider the task of retrieving a set of images (which we refer to as the retrieval

set) that closely matches the scene contents and geometrical layout of an input image.

Figure 5-3 shows retrieval sets for typical input images using the gist feature. We show

the top 30 closest matching images from the LabelMe database based on the L1-norm

distance, which is robust to outliers. Notice that the gist feature retrieves images that

match the scene type of the input image. Furthermore, many of the objects depicted

in the input image appear in the retrieval set, with the larger objects residing in

approximately the same spatial location relative to the image. Also, the retrieval set

has many images that share a similar geometric perspective. Of course, not every

retrieved image matches well and we account for outliers in Section 5.4.

We evaluate the ability of the retrieval set to predict the presence of objects in

the input image. For this, we found a retrieval set of 200 images and formed a

normalized histogram (the histogram entries sum to one) of the object categories

that were labeled. We compute performance for object categories with at least 200

training examples and that appear in at least 15 test images. We compute the area

under the ROC curve for each object category. As a comparison, we evaluate the

performance of an SVM applied to gist features by using the maximal score over a set

of bounding boxes extracted from the image. The area under ROC performance of the

retrieval set versus the SVM is shown in Figure 5-4 as a scatter plot, with each point

corresponding to a tested object category. As a guide, a diagonal line is displayed;

those points that reside above the diagonal indicate better SVM performance (and

vice versa). Notice that the retrieval set predicts well the objects present in the

input image and outperforms the detectors based on local appearance information

(the SVM) for most object classes.

1Note that the performance differs from that as reported in [47]. The difference is that we
have cropped all of the images to be 256 × 256 pixels. The original dataset has images of different
resolutions and aspect ratios that correlate with the scene categories and thereby provides non-visual
discriminant cues.
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Figure 5-4: Evaluation of the goodness of the retrieval set by how well it predicts
which objects are present in the input image. We build a simple classifier based
on object counts in the retrieval set as provided by their associated LabelMe object
labels. We compare this to detection based on local appearance alone using an SVM
applied to bounding boxes in the input image (the maximal score is used). The area
under the ROC curve is computed for many object categories for the two classifiers.
Performance is shown as a scatter plot where each point represents an object category.
Notice that the retrieval set predicts well object presence and in a majority cases
outperforms the SVM output, which is based only on local appearance.
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5.3 Utilizing Retrieval Set Images for Object De-

tection

In Section 5.2, we observed that the set of labels corresponding to images that best

match an input image predict well the contents of the input image. In this section,

we will describe a model that integrates local appearance with object presence and

spatial likelihood information given by the object labels belonging to the retrieval set.

We wish to model the relationship between object categories o, their spatial loca-

tion x within an image, and their appearance g. For a set of N images, each having

Mi object proposals over L object categories, we assume a joint model that factorizes

as follows:

p(o, x, g|θ, φ, η) =

N
∏

i=1

Mi
∏

j=1

1
∑

hi,j=0

p(oi,j|hi,j, θ) p(xi,j |oi,j, hi,j, φ) p(gi,j|oi,j, hi,j, η) (5.1)

We assume that the joint model factorizes as a product of three terms: (i) p(oi,j|hi,j =

m, θm), the likelihood of which object categories will appear in the image, (ii) p(xi,j |oi,j =

l, hi,j = m, φm,l), the likely spatial locations of observing object category l in the

image, and (iii) p(gi,j|oi,j = l, hi,j = m, ηm,l), the appearance likelihood of object cat-

egory l. We let hi,j = 1 indicate whether object category oi,j is actually present in

location xi,j (hi,j = 0 indicates absence). Figure 5-5 depicts the above as a graphical

model. We use plate notation, where the variable nodes inside a plate are duplicated

based on the counts depicted in the top-left corner of the plate.

We instantiate the model as follows. The spatial location of objects are parame-

terized as bounding boxes xi,j = (cx
i,j, c

y
i,j, c

w
i,j, c

h
i,j) where (cx

i,j, c
y
i,j) is the centroid and

(cw
i,j,c

w
i,j) is the width and height (bounding boxes are extracted from object labels

by tightly cropping the polygonal annotation). Each component of xi,j is normalized

with respect to the image to lie in [0, 1]. We assume θm are multinomial parameters

and φm,l = (µm,l, Λm,l) are Gaussian means and covariances over the bounding box

parameters. Finally, we assume gi,j is the output of a trained SVM applied to a gist

feature g̃i,j. We let ηm,l parameterize the logistic function (1+exp(−ηm,l [1 gi,j]
T ))−1.
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Figure 5-5: Graphical model that integrates information about which objects are
likely to be present in the image o, their appearance g, and their likely spatial location
x. The parameters for object appearance η are learned offline using positive and
negative examples for each object class. The parameters for object presence likelihood
θ and spatial location φ are learned online from the retrieval set. For all possible
bounding boxes in the input image, we wish to infer h, which indicates whether an
object is present or absent.

The parameters ηm,l are learned offline by first training SVMs for each object class

on the set of all labeled examples of object class l and a set of distractors. We then

fit logistic functions to the positive and negative examples of each class. We learn the

parameters θm and φm,l online using the object labels corresponding to the retrieval

set. These are learned by simply counting the object class occurrences and fitting

Gaussians to the bounding boxes corresponding to the object labels.

For the input image, we wish to infer the latent variables hi,j corresponding to

a dense sampling of all possible bounding box locations xi,j and object classes oi,j

using the learned parameters θm, φm,l, and ηm,l. For this, we compute the postierior

distribution p(hi,j = m|oi,j = l, xi,j, gi,j, θm, φm,l, ηm,l), which is proportional to the

product of the three learned distributions, for m = {0, 1}.

The procedure outlined here allows for significant computational savings over naive

application of an object detector. Without finding similar images that match the

input scene configuration, we would need to apply an object detector densely across

the entire image for all object categories. In contrast, our model can constrain which

object categories to look for and where. More precisely, we only need to consider

object categories with relatively high probability in the scene model and bounding

boxes within the range of the likely search locations. These can be decided based on

thresholds. Also note that the conditional independences implied by the graphical
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Figure 5-6: (a) Graphical model for clustering retrieval set images using their object
labels. We extend the model of Figure 5-5 to allow each image to be assigned to a la-
tent cluster si, which is drawn from mixing weights π. We use a Dirichlet process prior
to automatically infer the number of clusters. We illustrate the clustering process for
the retrieval set corresponding to the input image in (b). (c) Histogram of the number
of images assigned to the five clusters with highest likelihood. (d) Montages of re-
trieval set images assigned to each cluster, along with their object labels (colors show
spatial extent), shown in (e). (f) The likelihood of an object category being present
in a given cluster (the top nine most likely objects are listed). (g) Spatial likelihoods
for the objects listed in (f). Note that the montage cells are sorted in raster order.

model allows us to fit the parameters from the retrieval set and train the object

detectors separately.

Note that for tractability, we assume Dirichlet and Normal-Inverse-Wishart conju-

gate prior distributions over θm and φm,l with hyperparemters β and γ = (κ, ϑ, ν, ∆)

(expected mean ϑ, κ pseudocounts on the scale of the spatial observations, ν de-

grees of freedom, and sample covariance ∆). Furthermore, we assume a Bernoulli

prior distribution over hi,j parameterized by ξ = 0.5. We hand-tuned the remaining

parameters in the model. For hi,j = 0, we assume the noninformative distributions

oi,j ∼ Uniform(1/L) and each component of xi,j ∼ Uniform(1).

5.4 Clustering Retrieval Set Images for Robust-

ness to Mismatches

While many images in the retrieval set match the input image scene configuration and

contents, there are also outliers. Typically, most of the labeled objects in the outlier
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images are not present in the input image or in the set of correctly matched retrieval

images. In this section, we describe a process to organize the retrieval set images into

consistent clusters based on the co-occurrence of the object labels within the images.

The clusters will typically correspond to different scene types and/or viewpoints. The

task is to then automatically choose the cluster of retrieval set images that will best

assist us in detecting objects in the input image.

We augment the model of Section 5.3 by assigning each image to a latent cluster si.

The cluster assignments are distributed according to the mixing weights π. We depict

the model in Figure 5-6. Intuitively, the model finds clusters using the object labels

oi,j and their spatial location xi,j within the retrieved set of images. To automatically

infer the number of clusters, we use a Dirichlet Process prior on the mixing weights

π ∼ Stick(α), where Stick(α) is the stick-breaking process of Griffiths, Engen, and

McCloskey [44, 60, 85] with concentration parameter α. In the Chinese restaurant

analogy, the different clusters correspond to tables and the parameters for object

presence θk and spatial location φk are the dishes served at a given table. An image

(along with its object labels) corresponds to a single customer that is seated at a

table.

Figures 5-7 and 5-8 illustrate the scene clustering model applied to the object

labels of the retrieval sets belonging to several input images. Given an input image,

shown in the left-most column, the five clusters with highest likelihood are visualized

in the adjacent columns. The set of image montages in the top row show example

retrieval images with highest likelihood that were assigned to each cluster by the Gibbs

sampler. The total number of retrieval images that were assigned to each cluster are

shown as a histogram beneath the input image in the first column. The number

of images assigned to each cluster is proportional to the cluster mixing weights, π.

The second row depicts the object labels that were provided for the images in the

top row, with the colors showing the spatial extent of the object labels. Notice

that the images and labels belonging to each cluster share approximately the same

object categories and geometrical configuration. Also, the cluster that best matches

the input image tends to have the highest number of retrieval images assigned to it
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Figure 5-8: Additional scene cluster examples. See Figure 5-7 and text for more
details.

120



(highest likelihood). The third row shows the likelihood of objects that appear in

the cluster (the nine objects with highest likelihood are shown). This corresponds

to θ in the model. The bottom row depicts the spatial distribution of the object

centroid within the cluster. The montage of nine cells correspond to the nine objects

listed in the third row, sorted in raster order. The spatial distributions illustrate

φ. Notice that typically at least one cluster predicts well the objects contained in

the input image, in addition to their location, via the object likelihoods and spatial

distributions.

To learn θk and φk, we use a Rao-Blackwellized Gibbs sampler to draw samples

from the posterior distribution over si given the object labels belonging to the set

of retrieved images. We ran the Gibbs sampler for 100 iterations. Empirically, we

observed relatively fast convergence to a stable solution. Note that improved perfor-

mance may be achieved with variational inference for Dirichlet Processes [57, 86]. We

manually tuned all hyperparameters using a validation set of images, with concentra-

tion parameter α = 100 and spatial location parameters κ = 0.1, ϑ = 0.5, ν = 3, and

∆ = 0.01 across all bounding box parameters (with the exception of ∆ = 0.1 for the

horizontal centroid location, which reflects less certainty a priori about the horizontal

location of objects). We used a symmetric Dirichlet hyperparameter with βl = 0.1

across all object categories l.

For final object detection, we use the learned parameters π, θ, and φ to infer hi,j.

Since si and hi,j are latent random variables for the input image, we perform hard

EM by marginalizing over hi,j to infer the best cluster s∗i . We then in turn fix s∗i and

infer hi,j, as outlined in Section 5.3.

5.5 Experimental Results

In this section we show qualitative and quantitative results for our model. We use

a subset of the LabelMe dataset for our experiments, discarding spurrious and non-

labeled images. The dataset is split into training and test sets. The training set

has 15691 images and 105034 annotations. The test set has 560 images and 3571
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annotations. The test set comprises images of street scenes and indoor office scenes.

To avoid overfitting, we used street scene images that were photographed in a differ-

ent city from the images in the training set. To overcome the diverse object labels

provided by users of LabelMe, we used WordNet [30] to resolve synonyms. For ob-

ject detection, we extracted 3809 bounding boxes per image. For the final detection

results, we used non-maximal suppression.

Example object detections from our system are shown in Figure 5-9(b),(d),(e).

Notice that our system can find many different objects embedded in different scene

type configurations. When mistakes are made, the proposed object location typically

makes sense within the scene. In Figure 5-9(c), we compare against a baseline object

detector using only appearance information and trained with a linear kernel SVM [96]

using SVM-light [45]. Thresholds for both detectors were set to yield a 0.5 false

positive rate per image for each object category (∼1.3e-4 false positives per window).

Notice that our system produces more detections and rejects objects that do not

belong to the scene. In Figure 5-9(e), we show typical failures of the system, which

usually occurs when the retrieval set is not correct or an input image is outside of the

training set.

In Figure 5-10, we show quantitative results for object detection for a number

of object categories. We show ROC curves (plotted on log-log axes) for the local

appearance detector, the detector from Section 5.3 (without clustering), and the

full system with clustering. We scored detections using the PASCAL VOC 2006

criteria [25], where the outputs are sorted from most confident to least and the ratio

of intersection area to union area is computed between an output bounding box and

ground-truth bounding box. If the ratio exceeds 0.5, then the output is deemed

correct and the ground-truth label is removed. While this scoring criteria is good for

some objects, other objects are not well represented by bounding boxes (e.g. buildings

and sky).

Notice that the detectors that take into account context typically outperforms the

detector using local appearance only. Also, clustering does as well and in some cases

outperforms no clustering. Finally, the overall system sometimes performs worse for
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indoor scenes. This is due to poor retrieval set matching, which causes a poor context

model to be learned.

In addition to transferring knowledge about likely objects in the image, we can also

transfer other ground-truth information that is associated with the labeled objects.

Here, we investigate depth ordering information. Currently, the LabelMe dataset does

not contain explicit depth ordering labels. However, the relative depth ordering of the

labels can be inferred reliably [70]. For the clustered labels, we count the occlusion

relationship between each of pair candidate objects. We assign two candidate objects

to different layers if the occlusion rate exceeds 60%. In Figure 5-1, we depict the

depth layer relationships between the detected objects.

5.6 Conclusion

We presented a framework for object detection in scenes based on transferring knowl-

edge about objects from a large labeled image database. We have shown that a

relatively simple parametric model, trained on images loosely matching the spatial

configuration of the input image, is capable of accurately inferring which objects

are depicted in the input image along with their location. We showed that we can

successfully detect a wide range of objects depicted in a variety of scene types.
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Chapter 6

Conclusion

The goal of this work was to pursue directions that may eventually lead us to recognize

the many objects that comprise our visual world. The challenging image in Figure 1-1

illustrates the difficult nature of this problem. We observed that many confounding

factors may trick a computer vision system. These include, but are not limited to,

intra-class object variation, clutter, pose, lighting, dealing with never-before seen

objects, scale, and lack of visual experience.

This thesis investigated three issues in object recognition: (i) the role and im-

portance of labeled image databases for recognition, (ii) what can be learned from

simply looking at images, and (iii) ways of exploiting large labeled image databases

to detect objects embedded in scenes. The results from this investigation suggest the

following contributions.

6.1 Contributions

Visual experience is important if we want computer vision systems to be able to

recognize objects. For this, we need to have seen examples and know the identity

of many objects classes and how they are embedded in the world. In Chapter 2, we

built a large database of images and developed an online annotation tool to allow

many people to label the location and identity of objects in images. Through this

effort, which we called LabelMe, we have collected to date almost 200K annotations
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from users across the globe. The dataset contains a rich set of objects in many

different scene classes. Furthermore, the quality of the annotations are quite good.

We showed that this database is one of the largest of its kind by comparing it with

existing standard datasets used for object recognition.

As is seen in other applications, large amounts of labeled data dramatically in-

creases the performance of classification. We also saw this in the classification task

illustrated in Figure 5-2. A labeled database of images is important for training and

validating recognition systems. As a result, the LabelMe database drove the contents

and analysis of the other chapters of this thesis.

With such a large database of images and objects, we explored a few simple exten-

sions that provide additional useful information about the labeled objects. First, we

employed the use of WordNet [30] to give semantic meaning to the object labels pro-

vided by the users of the annotation tool. This is important because users freely type

in the object’s identity into the tool, thereby resulting in a diverse range of descrip-

tions for objects belonging to the same class. Mapping labels to semantic meanings

allows us to overcome the problem of synonyms. Furthermore, the WordNet output

provides a hierarchy of relationships between the classes, which allows exploration of

the database using superordinate object categories.

Second, we showed how to exploit the co-occurrence of object labels in images

to discover object-part relationships. This is important as part-based recognition

systems have been shown to be a useful way to recognize objects. Discovering an

object’s parts also provides an additional hierarchy to the object labels.

Third, we showed a simple heuristic over the label control points that allows

the recovery of a depth ordering relationship between the labeled objects in a scene.

Objects often occlude each other in scenes, and reasoning about occlusion is a difficult

task. The automatic recovery of the occlusion relationships between objects in a scene

is an important step in this regard. As a result, this extension augments the object

labels and provides an accurate ground truth for depth ordering.

Lastly, we developed a way to simplify the labeling process by bootstrapping from

the existing object labels in the database. We trained an object detector and used it
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to classify candidate regions as given by an automatic image segmenter. The most

confident regions are selected and presented to the labeler. Instead of having to click

control points along the boundary of an object, the user now only has to decide

whether the automatic object boundary is good enough. This can produce rapid

labeling of images for some categories.

While many labeled images are necessary for recognition, it is also important to

consider the ability to reason about unfamiliar and unlabeled objects. In Chapter 3,

we studied the extreme situation when no labels are provided to a recognition system.

We drew inspiration from the text understanding literature where semantic models

were developed to discover latent topics in text. We employed the visual words

representation for images [78], which allowed us to use these semantic models. We

primarily investigated the Latent Dirichlet Allocation (LDA) model [15].

As a result, we were able to recover latent topics that corresponded to object cat-

egories. We validated our method on a simple dataset where a single object occupied

most of the image. We looked at three outputs of the LDA model on the simple

dataset: (i) the image features that best describe the discovered categories, (ii) the

images that correspond to each topic, and (iii) localization of the objects within the

image given the learned model. We saw that the image features best describing the

discovered categories corresponded to semantically meaningful object parts. Further-

more, the images depicting a single object category were accurately grouped together

given their likely assignments to topics. Finally, objects were reasonably segmented

when mixed with some background clutter.

While the object discovery results were encouraging, a problem was encountered

when attempting to apply the technique to entire scenes composed of many objects.

This was a result of two issues of the image representation: (i) the visual words

representation histograms quantized descriptions of local regions in the image, thereby

losing the spatial relationship between features extracted from different parts of the

image and (ii) the frequent occurrence of polysemy among the visual words, where

two different visually semantic parts are described by the same feature. These issues

demanded that we consider a way to introduce spatial constraints when discovering

128



objects.

We considered an augmentation to the visual words representation, called dou-

blets, where we grouped two nearby features together. We observed slightly improved

performance over the visual words representation. However, the doublet representa-

tion lacked enough spatial support to see large gains in performance.

In Chapter 4, we utilized image segmentation to parcel images into visually coher-

ent pieces. As we saw, image segmentation is not perfect: it often splits objects into

separate image fragments or includes multiple objects in the same fragment. How-

ever, over a large dataset of images, image segmentation works a lot of the time for

many object categories. We reasoned that if this holds true, then we have reduced

the problem to the earlier discovery problem, which worked well for images depicting

a single object.

We showed improved object discovery for a more complicated set of images ex-

tracted from LabelMe. To visualize the results, we used a simple metric to measure

the goodness of a particular image fragment of belonging to a discovered topic and

displayed the best scoring fragments for each topic. We noticed that the best scoring

fragments for a given topic matched well in visual appearance. An important con-

sequence of this visualization is the ability to automatically parse and display the

contents of a large image set. We showed this for the satellite image example in

Figure 4-7.

After considering the case of learning about objects without supervision, we re-

turned to the situation where we have supervision. In Chapter 5, we developed a

system for detecting objects embedded in scenes. While this problem has been ad-

dressed before, we proposed a system based on aligning the components of a scene

depicted in an input image to a large database of labeled images. The scenes that

align best in the image database were used to assist in detecting objects in the input

image. This step offers the advantage that we do not have to model various complex

interactions that may exist between objects embedded in a scene. We showed results

on a held-out subset of LabelMe over a range of objects and scenes. We also compared

our output to object detection when we do not consider information about the scene.
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The results described in this thesis are encouraging. However, we have only man-

aged to show convincing results for at most hundreds of object categories. Also, we

have only analyzed a subset of the visual world: frozen instances in time captured

by static images. This compels us to consider the following open issues in recogni-

tion: (i) How do we effectively scale recognition to cope with the thousands of object

categories that exist and are recognizable by humans? (ii) How can we generalize

our results to motion and actions in video? We hope that the techniques and data

presented in this thesis will offer a good starting point in addressing these issues.
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