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Abstract. We introduce an approach for analyzing annotated maps of
a site, together with Internet photos, to reconstruct large indoor spaces
of famous tourist sites. While current 3D reconstruction algorithms often
produce a set of disconnected components (3D pieces) for indoor scenes
due to scene coverage or matching failures, we make use of a provided
map to lay out the 3D pieces in a global coordinate system. Our approach
leverages position, orientation, and shape cues extracted from the map
and 3D pieces and optimizes a global objective to recover the global
layout of the pieces. We introduce a novel crowd flow cue that measures
how people move across the site to recover 3D geometry orientation. We
show compelling results on major tourist sites.
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1 Introduction

Recent breakthroughs in computer vision now allow us to model our world in
3D with extraordinary accuracy and visual fidelity from just about any set of
overlapping photos [1–3]. However, a limitation of state-of-the-art 3D reconstruc-
tion techniques from Internet photos is that large scenes tend to break up into
a collection of disconnected pieces due to gaps in the depicted scene coverage
or matching failures. Rather than a single, fully-connected Vatican model, for
instance, we get a collection of smaller 3D pieces for different rooms, such as
the Sistine Chapel, the Raphael Rooms, and the Hall of Maps, each having their
own 3D coordinate system. A major challenge is to automatically put these 3D
pieces together correctly into a global coordinate frame. This is akin to solving
a 3D jigsaw puzzle, where the scale, rotation, and translation of the 3D pieces
must be recovered with respect to the global coordinate frame.

Solving the 3D jigsaw puzzle is extremely difficult using image information
alone due to the aforementioned coverage and matching failures. Instead, we
seek to leverage readily available map data to solve the 3D jigsaw puzzle. Such
data provides additional information that helps constrain the spatial layout of
the 3D pieces. For example, a map of the Vatican shows an annotated floorplan
of the different rooms, with a legend providing the names of the rooms and any
objects located inside the rooms. Such maps are plentiful and widely available,
for example in tourist guidebooks (e.g. Rick Steves, Lonely Planet, Baedeker)
and online (e.g. planetware.com).
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Fig. 1. Given a set of disconnected reconstructed 3D models of a large indoor scene,
for example the Vatican (left), we jointly reason about a map of the site (middle) and
the 3D pieces to produce a globally consistent reconstruction of the entire space (blow
up at right).

Automatically leveraging map data for the 3D jigsaw puzzle is challenging
as the pieces are unlabeled and lack absolute position, orientation, and scale.
The 3D Wikipedia system provided one approach to automatically link objects
described in text to their spatial location in a 3D model [4]. While [4] can be
used to link the 3D pieces to text on an annotated map, it does not provide
information on how to place the pieces in a global coordinate system. Moreover,
most maps provide only 2D cues (e.g., via a floorplan), with objects and di-
mensions placed only approximately. Finally, we must cope with rooms having
orientation ambiguities (e.g. square or rectangular rooms), which the map and
3D piece geometry alone cannot disambiguate.

The key to our approach is to extract and integrate position, orientation, and
scale cues from the 3D pieces and the map. These include the room shape, map
annotations, cardinal direction (available as compass measurements provided
in the image EXIF data used to reconstruct the 3D pieces), and crowd flow
through the different rooms of the site. The latter crowd flow cue, which measures
the dominant direction of travel through the 3D pieces, provides information
on the orientation of the pieces. For example, in the Vatican Museum tourists
tend to go from the entrance toward the Sistine Chapel, passing through the
Gallery of Candelabra, Gallery of Tapestries, and Hall of Maps along the way.
We formulate the 3D jigsaw puzzle problem as an integer quadratic program
with linear constraints to globally solve for the 3D layout of the pieces. Ours is
the first system to reconstruct large indoor spaces of famous tourist sites from
Internet photos via joint reasoning with map data and disconnected 3D pieces
returned by structure-from-motion.

We show compelling results on four major sites. Our system reliably as-
signs and orients many of the 3D pieces relative to the input maps (we provide a
detailed analysis of assignment precision/recall and orientation accuracy). More-
over, we show an integrated visualization of the map and reconstructed 3D ge-
ometry, where a user can interactively browse and fly to different rooms of the
site (please see the video [5]).
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2 Related work

Our work is related to prior research leveraging auxiliary information, such as
geographic data, human path of travel, and text, to augment 3D reconstruction
and image localization. Geographic data, such as Google Street View and Google
Earth 3D models, has been used to georegister point clouds generated from In-
ternet images [6]. Maps have been used in conjunction with visual odometry for
self localization [7, 8]. Human path of travel has been used for image geolocal-
ization [9] and predicting tourists’ path of travel [10]. Note that in this work we
use human path of travel to recover 3D piece orientation. Finally, text has been
used to automatically label objects in reconstructed geometry [4].

Most related is prior work that matched free space from a 3D reconstruction
to white space in a map [11]. However, [11] addressed a particularly simple case
where the 3D jigsaw puzzle has only one large piece (the 3D model), and the
floor plan is accurate. While aligning 3D geometry shards has been explored by
other authors (e.g., Stanford’s Forma Urbis project [12]), our problem is more
challenging as the scale of each piece is unknown and we do not have access to
complete scans. Also related are approaches for solving 2D jigsaw puzzles [13–
15], which operate entirely on 2D rectangular puzzle pieces and determine puzzle
piece locations through absolute position cues (e.g. corners, edges, color) and
adjacency cues (e.g. shape). The analogy in our case is that label correspondences
provide absolute cues and tourist flow provides adjacency.

Reconstructing large indoor spaces is a challenging problem due to lack of
texture on many surfaces and the difficulty of systematically scanning every
surface of a site. Major efforts to scan and reconstruct large indoor scenes in-
clude the Google art project [16], museum reconstruction via constructive solid
geometry [17], and human-operated systems to scan a large site [18, 19].

3 System overview

In this paper we present a system to solve the 3D jigsaw puzzle via joint reasoning
over 3D geometry and annotated map data. Our system takes as inputs: (i) one or
more reconstructed 3D pieces for a site and (ii) an annotated map corresponding
to a set of 2D map points of interest (associated with rooms and named objects),
with corresponding 2D map regions (the extent of rooms and objects in the map)
and text annotations (the legend).

Our system begins by generating a discrete set of candidate placements of
the 3D pieces to the map points of interest (Section 4.2). 3D pieces are assigned
to the map by querying Google Image Search using the extracted text annota-
tions from the map and linking the returned images to the 3D pieces via camera
resectioning. This provides links between a given map point of interest to candi-
date 3D locations on the 3D pieces. Note that the links are noisy as the returned
images may depict incorrect locations of the site. Given the links, a discrete set
of candidate 3D transformations to the global coordinate system are generated
for each 3D piece.
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Given the candidate placements, we optimize an objective function that seeks
a globally consistent layout of the 3D pieces by integrating cues extracted over
the points of interest, their 2D map regions, and the 3D pieces, described in
Section 4. The objective integrates cues about the shape of the rooms, cardinal
direction, crowd flow through the site, and mutual exclusion of the 3D pieces.
We show results of our system in Section 5.

4 Model for the 3D jigsaw puzzle

Given a discrete set of candidate placements of 3D pieces to map points of inter-
est, we seek a globally consistent layout of the 3D pieces. Let p ∈ {1, . . . , P} index
the map points of interest, m ∈ {1, . . . ,M} the 3D models, qm ∈ {1, . . . , Qm} 3D
locations on 3D model m, and tm ∈ {1, . . . , Tm} candidate 3D transformations
of 3D model m to the global coordinate system. A candidate placement is the
tuple (p,m, q, t), where we omit the subindices for brevity.

A solution to the 3D jigsaw puzzle is a selection of 3D piece placements
from the candidate set. We define binary variables xp,m,q,t ∈ {0, 1} to indicate
whether the candidate placement appears in the solution set and auxiliary binary
variables ym,t ∈ {0, 1} to indicate that 3D model m is placed in the global coor-
dinate system under 3D transformation t. We formulate the 3D jigsaw puzzle as
an integer quadratic program with linear constraints where vector b and matrix
A encode unary and pairwise cues over the position, scale, and orientation of
the candidate placements (described in Section 4.1):

max
x,y

xTAx+ bTx (1)

s.t. ∀p
∑
m,q,t

xp,m,q,t ≤ 1 ∀q
∑
p,m,t

xp,m,q,t ≤ 1 (2)

∀m
∑
t

ym,t ≤ 1 ∀p,m, q, t xp,m,q,t ≤ ym,t (3)

Constraints (2) enforce mutual exclusion of the 3D puzzle pieces. We require
each point of interest p to be assigned to at most one 3D location q on a model,
and vice versa. We find that enforcing mutual exclusion is critical for our problem
since we are reconstructing unique object instances of a site. Constraints (3)
enforce each model m to be placed in the global coordinate system under a
single 3D transformation t.

Given pairwise and unary coefficients A and b, we optimize Objective (1)
using mixed-integer quadratic programming [20]. Note that while it has been
shown that solving jigsaw puzzles with uncertainty in the piece compatibility is
NP-hard [21], the small size of our datasets, of up to a few dozen pieces, enables
us to express the mutual exclusion constraints exactly. This is in contrast to
recent work in modeling 2D jigsaw puzzles that have formulated the problem as
a Markov Random Field with mutual exclusion constraints approximated by a
set of local pairwise terms due to large problem size [13, 14].
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Fig. 2. Illustration of the crowd flow cue for two adjacent rooms on the map. For a
sequence of photos captured by a particular user, green points show the location where
the images where taken and t1, . . . , tn their ordered time stamps. Here, the user moved
from the blue to the red room from left to right. Our goal is to orient the rooms to
be consistent with the direction of travel. Left: room orientations are consistent with
the user path through both rooms. Middle: the red room is inconsistent with the user
path. Right: both rooms are inconsistent with the user path.

4.1 Cues for position, scale, and orientation

In this section we describe the cues that are used to pose the 3D pieces relative
to the map. These cues encode the crowd flow through the space, number of
registered image search results to 3D pieces, cardinal direction of the pieces, and
room shape.

Crowd flow potential As previously noted [10], for many popular places peo-
ple tend to visit different parts of the scene in a consistent order. For example,
in the Vatican Museum, most tourists walk from the entrance toward the Sistine
Chapel, passing through the Gallery of Candelabra, Gallery of Tapestries, and
Hall of Maps along the way. We seek to harness the “flow of the crowd” to help
disambiguate the orientation of the 3D pieces.

We wish to characterize the crowd flow within each 3D piece m and between
3D pieces m and m′. We start by considering the sets of photos taken by indi-
vidual Flickr users that were aligned to the 3D pieces and sort the photos based
on their timestamps. These aligned images indicate the users’ direction of travel
within the 3D pieces (e.g., tourists move from right to left of the main painting
inside the Hall of the Immaculate Conception) and across the 3D pieces (e.g.,
tourists visit the Galeria of Candelabra before the Gallery of Maps). We say
that the candidate placements of two 3D pieces agree with the crowd flow if the
dominant direction of travel across the two pieces is oriented in the same direc-
tion as within the pieces after placing them onto the global coordinate system.
We illustrate the crowd flow cue in Figure 2.

More concretely, given the camera locations for the images for a particular
user i in model m, let dmi,k be a unit vector in the direction of travel between
consecutive images k and k + 1 in the sequence, which corresponds to how the
user moved between shots. For candidate placement α = (p,m, q, t), we define
the dominant direction of travel within 3D piece m as δα = Ht(norm(

∑
i,k d

m
i,k))

where Ht(·) is the 3D transformation for t and norm(·) normalizes the input
vector to unit length.

To estimate the dominant direction of travel across 3D pieces m and m′,
we count the number of users um,m′ that took a picture first in m and later in
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m′. For candidate placements α and α′ with m 6= m′, we denote the dominant
direction of travel across the two pieces in the global coordinate system as the
unit vector δα,α′ = sign(um,m′ − um′,m) · norm(Ht′(cm′) − Ht(cm)) where cm
is the 3D centroid of 3D piece m. Note that if most users travel from m to m′,
δα,α′ will point in the direction from 3D piece m to m′ in the global coordinate
system. We define the crowd flow cue for candidate placements α and α′ as the
sum of inner products:

Aα,α′ = < δα,α′ , δα > + < δα,α′ , δα′ > (4)

Unary potentials For each candidate placement we extract unary poten-
tials for assignment φassign(α), cardinal direction φcard(α), and room shape
φshape(α). We concatenate these potentials into vector Φ(α) and, given weights
w, define the unary coefficients b as:

bα = wTΦ(α) (5)

We wish to leverage the vast amounts of labeled imagery online to connect the
map points of interest to their locations in the 3D pieces. Using the text annota-
tion for each point of interest in the map, we issue a query to Google Image Search
concatenating the annotation text with the site name, followed by registering the
returned images to the 3D pieces. We define φassign(α) = count(p,m, q) as the
number of images retrieved by querying for the text associated with map point
of interest p that are registered to the 3D location q in model m.

A small fraction of Flickr images contain heading information in EXIF tags
(e.g., via compass). Although we have found such data to be sparse and not
always reliable, we can exploit it when available. The cardinal direction potential
φcard(α) measures the compatibility of compass measurements corresponding to
images used to reconstruct a 3D piece to a cardinal direction given on the map
(e.g. “north”). Let Cm > 0 be the number of images used to reconstruct 3D
piece m having a heading and Cm,t be the number of such images that agree on
the orientation of the provided cardinal direction within τ degrees after applying
3D transformation t into the global coordinate system. We define the potential
to be φcard(α) = Cm,t/Cm.

Next we wish to encode how well the 3D piece matches the shape of a given
2D region on the map. We encode the shape by projecting the structure-from-
motion points of model m onto the map via transformation t and rasterize the
points into a grid of cells. The shape potential φshape(α) is a weighted sum of
three terms: (i) the ratio of intersection area over union between the 2D region
and occupied grid cells, (ii) average truncated distance of each grid cell to the
2D map region edge, and (iii) fraction of grid cells that lie outside of the region.

4.2 Generating candidate placements

In this section we describe how to generate the set of candidate placements of
3D pieces to map points of interest. First, we parse the map into a set of regions
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Fig. 3. Left: A 3D piece of our system corresponding to the Hall of the Immaculate
Conception. Middle: Colored 2D regions extracted from the floorplan. Number 72 in
purple corresponds to the ground truth location of the 3D piece. Right: Candidate
placements of the 3D piece to the 2D region.

and points of interest with accompanying text, described in Appendix A. Then
we describe how we assign and align the 3D pieces to the map regions and points
of interest.

Given the extracted text annotations from the map, we align images down-
loaded from Google image search to the 3D pieces. We cluster the set of inlier
3D points across all queries and set the 3D locations q as the centers of mass
of the clusters. We orient the vertical direction of each 3D piece by aligning its
z-axis with its up vector and setting the ground plane (z = 0) at the bottom of
the piece. The up vector is the normal direction of a plane fitted to the inlier
camera centers of the piece, oriented towards the cameras’ up vectors.

A map may provide labels for only the room and/or for multiple objects in a
room. For example, the Vatican Museums have only the rooms labeled, whereas
the Pantheon has objects labeled within the main room. We wish to account
for both cases when generating candidate placements. When only the room is
labeled, we generate multiple candidate placements by finding local maxima of
the unary shape potential φshape(α). When multiple objects are labeled, we use
the candidate assignments between the 3D locations on the models and the 2D
points of interest on the map as putative matches. We then estimate a similarity
transformation given the matches to yield the candidate placements. Example
candidate placements are shown in Figure 3.

5 Results

We evaluated our system on four major tourist sites: the Vatican Museums, St.
Peter’s Basilica in Rome, Pantheon in Rome, and the Hearst Castle. We collected
maps for each site and reconstructed 3D models for the sites by downloading im-
ages from Flickr by querying for the site name and running VisualSFM [22, 23].
In addition, for each reconstructed Flickr photo, we downloaded all photos taken
by the same user within 2 hours and match them to the reconstructed pieces,
yielding a much larger image set (factor of 5-10). For visualization purposes we
use PMVS for multi-view stereo [24] and Poisson Surface Reconstruction [25] to
generate colored meshes. Note that all these packages are freely available online.
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Table 1. Site statistics: # POIs – number of points of interest in the map, # GT POIs
– number of points of interest in the map with ground truth 3D model assignments, #
GT Orientations – number of points of interest in the map with ground truth 3D model
orientation assignments, # Images – number of images used in the 3D reconstruction,
# 3D Pieces – number of reconstructed 3D pieces.

Site # POIs # GT POIs # GT Orientations # Images # 3D Pieces

Vatican Museums 75 30 11 11K 68

Hearst Castle 22 5 5 3K 30

Pantheon 9 8 8 705 11

St. Peter’s 34 13 11 3K 55

We collected ground truth assignments between the pieces and the map leg-
ends by finding information in authoritative sites, such as Wikipedia articles
and specialized sites about the landmarks, like the official website of the Vatican
Museums or saintpetersbasilica.org. Collecting ground truth orientations of the
3D pieces is challenging given that images alone do not disambiguate between
orientations. Fortunately some authoritative sites contain more detailed maps
for a small section of a landmark that place different objects inside the rooms
or enumerate the views with their cardinal orientations. We can also infer the
orientation of some rooms from official museum itineraries by correlating the
direction of travel of the 3D pieces with the observed direction of travel from
the Flickr users. We summarize the ground truth dataset statistics in Table 1.

The Vatican Museums and the Hearst Castle datasets are examples of very
large multiroom scenes where most pieces correspond to complete rooms in the
site, like the Sistine Chapel or the Raphael Rooms in the Vatican Museums.
Figures 4 and 5 show the recovered layout of the different 3D pieces using the
annotated maps for the Vatican Museums and Hearst Castle, respectively. Notice
that we are able to correctly position and scale/orient many of the 3D pieces.
While our 3D model coverage appears sparse in some regions, particularly the
lower floor of the Vatican and 2nd floor of Hearst Castle, we correctly place most
of the most visited and well-photographed rooms, such as the Raphael Rooms
and the 2nd floor galleries of the Vatican Museums. Indeed, the correctly aligned
pieces account for 75% and 73% of all reconstructed images for the Vatican
Museums and Hearst Castle respectively. Note that some pieces are incorrectly
scaled, like the Pigna Courtyard, due to the lack of a complete model of the
room, as well as errors in the map parsing.

The Pantheon and St. Peter’s Basilica are examples of single large rooms,
where the annotated maps detail the specific objects names present in the site.
Both sites contain large open spaces that enable the 3D reconstruction process
to create a mostly complete 3D model of the entire site. Figures 6 and 7 show
the recovered layout for both sites. The Pantheon model was aligned to the map
by the assignment of 7 of its objects to points of interest in the map. In the
St. Peter’s case, three objects contained in the large 3D model were assigned to
points of interest as well as other smaller models, such as Michelangelo’s Pieta
and the Chapel of Presentation.
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Fig. 4. Results for the Vatican Museums. 3D pieces are shown as the projection of
the SfM points on the map, with different colors for each model. Green stars represent
correct assignments, red stars incorrect ones. Please zoom in on the electronic version
to see the details.

We quantitatively evaluate the assignments of 3D pieces to the points of
interest in the map and the orientation of those assignments in Table 2. As a
baseline we use only the assignment potential score φassign(α) described in Sec-
tion 4.1, which ignores the mutual exclusion constraint. Our system consistently
improves the precision of the assignment over the baseline. The orientations pro-
posed by our system for the correctly assigned points of interest are correct in
25 out of 33 cases across all sites.

We perform an ablative study over the orientation cues for the sites with
multiple rooms (Vatican Museums and Hearst Castle). Note that the Pantheon
is a single large room and St. Peter’s has stand-alone objects (e.g. the Pieta,
the Altar of St. Jerome), plus one central room. In Table 3 we show statistics of
the data collected for the cues and orientation accuracy values using the crowd
flow cue, the cardinal direction cue and the joint model. The crowd flow cue
disambiguates cases such as the galleries in the second floor of the Vatican, but
fails on 3D pieces representing objects, such as statues or paintings, since users
don’t move in a predetermined path of travel when photographing them. The
compass cue is powerful when enough data is available, but is ineffective for
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Fig. 5. Results for the Hearst Castle. 3D pieces are shown as the projection of the SfM
points on the map, with different colors for each model. Green stars represent correct
assignments, red stars incorrect ones.

Table 2. For each site, we report assignment precision/recall values with respect to
all annotated points of interest in the map for our model and a baseline (see text), and
orientation accuracy of our model.

Site
Assignment Orientation

Baseline Model Model
Precision Recall Precision Recall Accuracy

Vatican Museums 53% 57% 73% 43% 91%
Hearst Castle 83% 27% 83% 27% 60%

Pantheon 67% 89% 100% 78% 100%
St. Peter’s 45% 59% 70% 29% 50%

Table 3. For each site, we report orientation accuracy using the crowd flow cue, the
cardinal direction cue and the joint model.

Site Crowd flow Cardinal Direction Joint Model

Vatican Museums 27% 72% 91%
Hearst Castle 40% 40% 60%

datasets with fewer photos, like the Hearst Castle, where we only match 3 out
of the 16 photos with compass heading to the assigned 3D pieces. Augmenting
the image dataset by downloading more photos for the set of users is critical for
the crowd flow and cardinal direction cues, as it vastly increases the number of
reconstructed photos and also the number of reconstructed photos per user. In
Table 4 we report statistics of the dataset expansion.

For each dataset, the integer quadratic program contained up to a thousand
variables and was solved within 5 seconds on a single workstation with 12 cores.
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Fig. 6. Results for the Pantheon. 3D pieces are shown as the projection of the SfM
points on the map, with different colors for each model. Green stars represent correct
assignments, red stars incorrect ones.

Table 4. For each site, we report the number of Flickr users, number of photos before
and after the dataset expansion and number of reconstructed photos before and after
dataset expansion.

Site Users
Photos Recons. Photos

Before After Before After

Vatican Museums 2112 11K 99K 4K 11K
Hearst Castle 367 3K 16K 828 3K

5.1 Failure cases

We have observed different failure cases of our system, showcasing the challenges
of reconstructing indoor spaces from 3D pieces.

In some cases, the annotated text in the map may yield noisy image search
results, leading to incorrect assignments. For example, in Figure 8(a), we show
the model recovered for the point of interest labeled as “Round Vestibule” in
the Vatican Museums that is actually the “Circular Hall”, which is located in
the same Pio Clementino Museum.

Another interesting case are the recovered 3D pieces corresponding to indi-
vidual objects, such as the painting in the “Sobieski Room”, shown in Figure
8(b). The room that contains the painting is rectangular and provides no cues
for precise alignment of the object, even when the orientation is recovered from
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Fig. 7. Results for the St. Peter’s Basilica. 3D pieces are shown as the projection of
the SfM points on the map, with different colors for each model. Green stars represent
correct assignments, red stars incorrect ones.

heading measurements. Our system can still provide a plausible alignment of the
object along one of the walls, but the object might be scaled incorrectly.

Our system also fails to produce precise alignments to the walls of the rooms,
such as the “Raphael Rooms” shown in Figure 8(c), due to inacurracies of the
map. In the annotated map of the Vatican Museum dataset, the first three
Raphael Rooms appear to have a 2:1 aspect ratio, although our 3D models
indicate an aspect ratio closer to 1:1. By consulting other maps from different
sources, we are able to determine that the aspect ratio of our models is actually
correct, i.e., the map is wrong. Being able to register multiple maps together
and detect these map inaccuracies is a promising direction for future work.

5.2 Navigation

We showcase the results of our indoor reconstructions via an interactive web
visualization tool. We illustrate the interactions of the visualization tool in Fig-
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(a) (b) (c)

Fig. 8. Failure modes: (a) Incorrectly placed 3D model of the “Round Hall”; assigned
point of interest marked in red, correct one in green, (b) ambiguous placement of object
due to lack of scale and orientation information, (c) inaccurate map with incorrect
aspect ratio for the rooms.

ure 9, but we refer the reader to the video available at the project website [5]. We
feature two navigation modes to explore the map and reconstructed geometry.
In map navigation mode, we allow common panning and zooming capabilities of
the map. When you click on a room that has been assigned a 3D piece, the visu-
alization automatically flies into the aligned 3D piece. You can navigate through
the piece via an image-based rendering visualization, similar to the one in Pho-
toTourism [26]. When you look towards a neighbouring room, an arrow appears
on the bottom of the screen pointing towards it. When you click on the arrow,
the visualization transitions between the two rooms, recreating the experience
of moving from one room to another.

6 Conclusion

This paper introduced the first system to reconstruct large indoor spaces of
famous tourist sites from Internet photos via joint reasoning with map data
and disconnected 3D pieces returned by structure-from-motion. We framed the
problem as a 3D jigsaw puzzle and formulated an integer quadratic program
with linear constraints that integrate cues over the pieces’ position, scale, and
orientation. We also introduced a novel crowd flow cue that measures how people
travel through a site. Experiments on multiple sites showed consistently high
precision for 3D model assignment and orientation relative to the input map,
which allows for high quality interactions in the visualization tool. Our system
works on popular tourist sites as it requires lots of images, text, and image
metadata.
Acknowledgements: The research was supported in part by the National Sci-
ence Foundation (IIS-1250793), the Intel Science and Technology Center for
Visual Computing (ISTC-VC), the Animation Research Labs, and Google.
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(a) (b) (c)

Fig. 9. Screenshots of our interactive visualization: (a) The annotated map is shown
with the aligned 3D models rendered on top. When the user clicks on the model of the
Hall of Immaculate Conception, the visualization flies into the room showing a photo
taken in it (b). An arrow points to the location of the next room, the Incencio Room,
and when clicked, the visualization flies the user to that room (c).

A Map parsing

Given an annotated map of a site, we seek to extract the spatial layout of the
different rooms and objects depicted on the map. Automatically parsing a map
is an interesting problem, but not strictly necessary for our task, as it would be
straightforward to have manual workers parse maps for all leading tourist sites,
or have future map-makers generate maps with the requisite annotations. For
completeness, we describe a semi-automatic method of extracting the spatial
layout and the object labels. We have restricted ourselves to annotated maps
depicting the floorplan of a space, with referenced rooms and objects in the map
appearing as text in a legend, as illustrated in Figure 6.

Our map parsing procedure begins by recovering a set of 2D regions from the
floorplan corresponding to rooms, hallways, courtyards and other features of the
site. We extract the floor plan of the map by clustering the pixel values found
in the map image by K-means. We generate 2-4 clusters and manually select
the cluster corresponding to the floorplan to form a binary image. To extract
regions corresponding to the rooms we must close small gaps in the floor plan
corresponding to doors and passages, which we achieve by simple morphological
operations. We recover a segment for the room region by flood filling seeded by
the room annotation marker on the map.

While OCR systems (e.g. Tesseract [27]) have shown much success in reading
text in images, automatically recognizing text labels and markers in maps is
still very difficult since the text is not generally structured into lines and may
appear in different orientations, thus violating critical assumptions made by
these systems. Moreover, markers and other visual elements appearing on the
floorplan confuse the text line detection algorithms. The application of recently
developed scene text recognition systems [28–30] to annotated maps remains
outside the scope of this work and an interesting topic for future work. For our
purposes we have manually annotated the map using LabelMe [31] by marking
each text label or marker with the appropriate text label.
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