
Abstract

Given a set of images containing multiple object categories, we seek to discover those categories and their image locations
without supervision. We achieve this using generative models from the statistical text literature: probabilistic Latent Semantic
Analysis (pLSA), and Latent Dirichlet Allocation (LDA). In text analysis these are used to discover topics in a corpus using the
bag-of-words document representation. Here we discover topics as object categories, so that an image containing instances
of several categories is modelled as a mixture of topics.

The models are applied to images by using a visual analogue of a word, formed by vector quantizing SIFT like region
descriptors. We investigate a set of increasingly demanding scenarios, starting with image sets containing only two object
categories through to sets containing multiple categories (including airplanes, cars, faces, motorbikes, spotted cats) and
background clutter. The object categories sample both intra-class and scale variation, and both the categories and their
approximate spatial layout are found without supervision.

We also demonstrate classification of unseen images and images containing multiple objects. Performance of the proposed
unsupervised method is compared to the semi-supervised approach of [7].1
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Abstract

Given a set of images containing multiple object categories,
we seek to discover those categories and their image loca-
tions without supervision. We achieve this using genera-
tive models from the statistical text literature: probabilistic
Latent Semantic Analysis (pLSA), and Latent Dirichlet Al-
location (LDA). In text analysis these are used to discover
topics in a corpus using the bag-of-words document repre-
sentation. Here we discover topics as object categories, so
that an image containing instances of several categories is
modelled as a mixture of topics.

The models are applied to images by using a visual ana-
logue of a word, formed by vector quantizing SIFT like
region descriptors. We investigate a set of increasingly
demanding scenarios, starting with image sets containing
only two object categories through to sets containing multi-
ple categories (including airplanes, cars, faces, motorbikes,
spotted cats) and background clutter. The object categories
sample both intra-class and scale variation, and both the
categories and their approximate spatial layout are found
without supervision.

We also demonstrate classification of unseen images and
images containing multiple objects. Performance of the
proposed unsupervised method is compared to the semi-
supervised approach of [7].

1. Introduction
Common approaches to object recognition involve some
form of supervision. This may range from specifying
the object’s location and segmentation, as in face detec-
tion [17, 24], to providing only auxiliary data indicating
the object’s identity [1, 5, 7, 25]. For a large dataset, any
annotation is expensive, or may introduce unforeseen bi-
ases. Results in speech recognition and machine translation
highlight the importance of huge amounts of training data.
The quantity of good, unsupervised training data – the set
of still images – is orders of magnitude larger than the vi-

sual data available with annotation. Thus, one would like
to observe many images and infer models for the classes of
visual objects contained within themwithout supervision.
This raises the scientific question which, to our knowledge,
has not been convincingly answered before: Is it possible to
learn visual object classes simply from looking at images?

Given large quantities of training data there has been
notable success in unsupervised topic discovery in text,
and it is this success that we wish to build on. We ap-
ply models used in statistical natural language processing
to discover object categories and their image layout analo-
gously to topic discovery in text. Documents are images and
we quantize local appearance descriptions to form visual
“words” [4, 18, 20, 26]. The two models we investigate are
the probabilistic Latent Semantic Analysis (pLSA) of Hof-
mann [9, 10], and the Latent Dirichlet Allocation (LDA) of
Blei et al. [3]. Both use the ‘bag of words’ model, where
positional relationships between features are ignored. This
greatly simplifies the analysis, since the data are represented
by an observation matrix, a talley of the counts of each word
(rows) in every document (columns).

The ‘bag of words’ model offers a rather impoverished
representation of the data because it ignores any spatial rela-
tionships between the features. Nonetheless, it has been sur-
prisingly successful in the text domain, because of the high
discriminative power of some words and the redundancy of
language in general. But can it work for images, where the
spatial layout of the features is almost as important as the
features themselves? While it seems implausible, there are
several reasons for optimism: (i) as opposed to old corner
detectors, modern feature descriptors have become power-
ful enough to encode very complex visual stimuli, making
them quite discriminative; (ii) natural images are also very
redundant (i.e. given a bag of features from an image, it is
highly unlikely to find another natural image with the same
features); (iii) because features are allowed to overlap in the
image, some spatial information is implicitly preserved (i.e.
randomly shuffling bits of the image around will almost cer-
tainly change the bag of words description). So, while these
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spatial relationships must eventually be taken into account,
here we are investigating how far the bag of words model
can be pushed in the image domain.

To use pLSA/LDA generative statistical models, we seek
a vocabulary of visual words which will be insensitive to
changes in viewpoint and illumination. We use vector quan-
tized SIFT descriptors [12] computed on affine covariant re-
gions [13, 14, 16]. Affine covariance gives us tolerance to
viewpoint changes; SIFT descriptors, based on histograms
of local orientation, give some tolerance to illumination
change. Others have used similar descriptors for object
classification [4, 15], but in a supervised setting.

We compare the two statistical models with a control
global texture model, similar to those proposed for pre-
attentive vision [22] and image retrieval [19]. Sect. 2 de-
scribes the pLSA and LDA statistical models; various im-
plementation details are given in Sect. 3. To explain and
compare performance, we apply the models to a series of
progressively more challenging datasets of visual images in
Sect. 4. We summarize in Sect. 5.

2. The pLSA and LDA models
We will describe the models here using the original terms
‘documents’ and ‘words’ as used in the text literature. Our
visual application of these (as images and visual words) is
then given in the following sections.

Suppose we haveN documents containing words from
a vocabulary of sizeM . The corpus of text documents is
summarized in aM by N co-occurrence tableN, where
n(wi, dj) stores the number of occurrences of a wordwi

in documentdj . This is the bag of words model. In addi-
tion, there is a hidden (latent) topic variablezk associated
with each occurrence of a wordwi in a documentdj .

pLSA: The joint probabilityP (wi, dj , zk) is assumed to
have the form of the graphical model shown in figure 1(a).
Marginalizing over topicszk determines the conditional
probabilityP (wi|dj):

P (wi|dj) =
K∑

k=1

P (zk|dj)P (wi|zk), (1)

whereP (zk|dj) is the probability of topiczk occurring in
documentdj ; andP (wi|zk) is the probability of wordwi

occurring in a particular topiczk.
The model (1) expresses each document as a convex

combination ofK topic vectors. This amounts to a matrix
decomposition as shown in figure 1(b) with the constraint
that both the vectors and mixture coefficients are normal-
ized to make them probability distributions. Essentially,
each document is modelled as a mixture of topics – the his-
togram for a particular document being composed from a
mixture of the histograms corresponding to each topic.
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Figure 1: (a) pLSA graphical model, see text. Nodes inside a given
box (plate notation) indicate that they are replicated the number
of times indicated in the top left corner. Filled circles indicate
observed random variables; unfilled are unobserved. (b) In pLSA
the goal is to find the topic specific word distributionsP (w|zk)
and corresponding document specific mixing proportionsP (z|dj)
which make up the document specific word distributionP (w|dj).
(c) LDA graphical model.

Fitting the model involves determining the topic vectors
which are common to all documents and the mixture co-
efficients which are specific for each document. The goal
is to determine the model that gives high probability to the
words that appear in the corpus, and a maximum likelihood
estimation of the parameters is obtained by maximizing the
objective function:

L =
M∏
i=1

N∏
j=1

P (wi|dj)n(wi,dj), (2)

whereP (wi|dj) is given by (1).
This is equivalent to minimizing the Kullback-Leibler

divergence between the measured empirical distribution
P̃ (w|d) and the fitted model. The model is fitted using
the Expectation Maximization (EM) algorithm as described
in [10].

LDA: In contrast to pLSA, LDA treats the multinomial
weights over topics as latent random variables. The pLSA
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model is extended by sampling those weights from a Dirich-
let distribution, the conjugate prior to the multinomial dis-
tribution. This extension allows the model to assign prob-
abilities to data outside the training corpus and uses fewer
parameters, thus reducing overfitting (see [3] for a detailed
comparison). The LDA model is shown in Figure 1(c),
whereWd is the number of words in documentd. The goal
is to maximize the following likelihood:

p(w|φ, α, β) =
∫ ∑

z

p(w|z, φ)p(z|θ)p(θ|α)p(φ|β)dθ

(3)
whereθ andφ are multinomial parameters over the topics
and words respectively andp(θ|α) andp(φ|β) are Dirichlet
distributions parameterized by the hyperparametersα and
β. Since the integral is intractable to solve directly, we
solve for the parameters using Gibbs sampling, as described
in [8].

The hyperparameters control the mixing of the multino-
mial weights (lower values give less mixing) and can pre-
vent degeneracy. As in [8], we specialize to scalar hyperpa-
rameters (e.g.αi = a∀i). For this paper, we usedαi = 0.5
andβj = 0.5.

3. Implementation details
Obtaining visual words: Two types of affine co-variant
regions are computed for each image. The first is con-
structed by elliptical shape adaptation about an interest
point. The method is described in [14, 16]. The second is
constructed using the maximally stable procedure of Matas
et al. [13] where areas are selected from an intensity wa-
tershed image segmentation. For both of these we use the
binaries provided at [23]. Both types of regions are repre-
sented by ellipses. These are computed at twice the origi-
nally detected region size in order for the image appearance
to be more discriminating.

Each ellipse is mapped to a circle by appropriate scaling
along its principal axes and a SIFT descriptor computed.
There is no rotation of the patch. Alternatively, the SIFT
descriptor could be computed relative to the the dominant
gradient orientation within a patch, making the descriptor
rotation invariant [12]. The SIFT descriptors are then vec-
tor quantized into the visual ‘words’ for the vocabulary. The
vector quantization is carried out here byk-means cluster-
ing computed from about 300K regions. The regions are
those extracted from a random subset (about one third of
each category) of images of airplanes, cars, faces, motor-
bikes and backgrounds (see experiment(E) in section 4).
About 1K clusters are used for each of the Shape Adapted
and Maximally Stable regions, and the resulting total vo-
cabulary has 2,237 words. The number of clusters,k, is
clearly an important parameter. The intention is to choose

(a)

(b)

Figure 2: Two examples of visual words. (a) A wheel of an
airplane. (b) A motorbike handle. In each case, the top three
rows show 15 occurrences of this visual word in different images
with the elliptical region superimposed. The bottom row shows
affine normalized regions for the top row of images. Note that the
normalized regions appear quite similar – which is why they are
grouped in the same cluster. In the original images, the elliptical
regions exhibit intra-class variation, and varying scale (the scaling
is removed in this display as the ellipses are size normalized for
visibility).

the size ofk to determine words which give some intra-class
generalization. Two examples of visual words are shown in
Fig. 2.

In text, a word with two different meanings is called pol-
ysemous (e.g. ‘bank’ as in (i) a money keeping institution,
or (ii) a river side). We observe the visual analogue of pol-
ysemy in figure 3. However, the generative models are de-
signed to cope with polysemous words. Such a word would
have a high probability in two different topics. The hid-
den topic variable associated with each word occurrence in
a particular document can assign such a word to particular
topic depending on the context of the document. We return
to this point in section 4.2.

Global Texture Model: To understand what level of per-
formance can be accounted for by low-level image process-
ing, we also implemented a simple texture clustering al-
gorithm as our baseline method. The algorithm computes
global feature histograms for each image in the database,
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(a)

(b)

Figure 3:Polysemy.Example of a single visual word correspond-
ing to two different (but locally similar) parts on two different ob-
ject categories. (a) Top row shows occurrences of this visual word
on the motorbike category, bottom row on the airplane category.
The parts tend to occur consistently on different categories, i.e. this
visual word fires mostly on the motorbike saddle and the airplane
wing. (b) Corresponding normalized frames. Note the similarity
of the normalized patches.

and then clusters these histograms, again usingk-means.
Using color histograms will not work for computing ob-

ject classes since individual objects in each class will not
necessarily have the same colors. Using texture histograms,
on the other hand, does capture quite a lot about many types
of objects (e.g. buildings have many vertical and horizon-
tal edges). We experimented with several ways to represent
texture and found the following simple method to yield the
best results.

For each image in the database (grayscale), we compute
the magnitude and the orientation of the gradient at each
pixel. The gradient magnitudes are collected into a his-
togram (10 bins), and the corresponding orientations which
are greater than a threshold (0.02 in our case) are also col-
lected into a histogram (12 bins). The histograms are nor-
malized and concatenated into a single 22-dimensional vec-
tor; one per each image in the database. The vectors are
then clustered usingk-means.

Model learning: In the case of pLSA, the EM algorithm
is initialized randomly, typically converges in 100-300 it-
erations, and takes about 10 mins to run on 3K images
(Matlab implementation on a 2GHz PC). For LDA, we
use Gibbs sampling to draw samples from the posterior
p(zi|z−i,w, α, β) over topics, wherez−i indicates all other
topic variables exceptzi. We do this for 50 rounds and use
the topic settings that maximizes the log-likelihood. Usu-
ally, we reach the maximum within the first 30 rounds. The
topic settings can then be used to compute relevant param-
eters, such asφ andθ. This process takes on the order of
an hour for 3K images. However, the independences in the

model allows for parallelism to be exploited.

4. Topic Discovery Experiments
Given a collection of completely unlabelled images, our
goal is to automatically discover the visual categories
present in the data and localize them in the image. To this
end, we carry out a set of quantitative experiments with pro-
gressively increasing level of visual difficulty. Since here
we know the object instances in each image, we use this in-
formation as a performance measure. A confusion matrix is
computed for each experiment for each of the three models
being tested (pLSA, LDA, and the baseline texture model).
Below we describe the datasets (1-8), the experiments (A-
F), and summarize the results for each.

Data sets: Our data set consists of six categories from
the Caltech image datasets (as previously used by Fergus
et al. [7] for semi-supervised classification), and two cate-
gories ((7) and (8) below) from the more difficult 101 cate-
gory dataset [6].

Label description # images
(1) All faces 435

(1ub) Faces on uniform background 435
a cropped version of (1)

(2) All motorbikes 800
(2ub) Motorbikes on uniform background 349

a subset of (2)
(3) All airplanes 800

(3ub) Airplanes on uniform background 263
a subset of (3)

(4) Cars rear 1155
(5) Leopards 200
(6) Background 1370
(7) Watch 241
(8) Ketch 114

The reason for picking these particular categories is
pragmatic: they are the ones with the greatest number of
images per category. All images have been converted to
grayscale before processing. Otherwise they have not been
altered in any way, with one notable exception: a large num-
ber of images in the motorbike category (2) and airplane
category (3) have a white border around the image which
we have removed since it was providing an artifactual cue
for object class.

4.1. Classification
In the following we carry out a series of experiments vary-
ing the number and difficulty of the categories. In each case
images are pooled from a number of original datasets, and
the three models are fitted to the ensemble of images (with
no knowledge of the image’s labels) for a specified number
of topics, K. This is by default set equal to the number of
categories in the dataset. For example, in experiment (B)
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Ex Categories pLSA LDA Texture
% # % # % #

A 2,3 ub 100 1 99 7 91 53
B 1-3 ub 100 2 96 40 94 55
C 1-3 97 56 96 71 91 170
D 1-4 98 70 87 365 72 1060
E 1-4 + bg 78 931 77 970 73 1174

E6* 1-4 + bg 76 1072 – – – –
E7* 1-4 + bg 83 768 – – – –
F 1-5,7-8 + bg 59 1515 64 1458 47 2093

Figure 4: Summary of the experiments. Column ‘%’ shows the
classification accuracy measured by the average of the diagonal
of the confusion matrix. Column ‘#’ shows the total number of
misclassifications. See text for a more detailed description of the
experimental results. (*) In the case of E6/E7 the two/three back-
ground topics are classified as one category.

the images are pooled from three categories (airplanes, cars
and motorbikes, all with uniform backgrounds) and models
with K = 3 objects (topics) are fitted. In the case of pLSA,
the model determines the mixture coefficientsP (zk|dj) for
each image (document)dj (wherez ∈ {z1, z2, z3} for the
three topics in example (C)). An imagedj is then classi-
fied as containing objectk according to the maximum of
P (zk|dj) overk. In the LDA case, we classify based on the
topic mixture weightsθ, which can be computed using the
samples drawn by the Gibbs sampler.

We performed the following experiments. The results
are summarized in table 4.

(A) Two object categories (2ub,3ub), uniform back-
grounds. This is a relatively easy test (Airplanes vs. Mo-
torbikes) with no background clutter to worry about. Both
models perform very well with pLSA having only 1 mis-
classified image, and LDA only 7.

The baseline texture model has 53 misclassified. Al-
though not perfect, the simple texture model performs sur-
prisingly well. This is probably due to the fact that there
are only two categories which can be easily separated by
gradient orientations (airplanes are less textured and more
recto-linear, while motorbikes have more texture at all ori-
entations).

(B) Three object categories (1ub,2ub,3ub), uniform
backgrounds. Here we increase the number of categories
by one, adding the cropped face dataset. The performance
of all three models is similar to that of experiment (A), de-
spite the addition of over 250 more images.

(C) Three object categories (1,2,3), cluttered back-
grounds . Now we introduce a cluttered background with
each object class. Because the backgrounds are somewhat

a b

Figure 5: (a) Example of a face image which is classified in exper-
iment C as a motorbike due to similar background (grass, trees)
to many motorbikes images. (b) An example of a motorbike with
mostly grass background.

correlated with the objects, we expect similar results regard-
ing the numbers of topics discovered, with the correlated
backgrounds being considered parts of the objects. How-
ever, this is a more visually challenging task as the back-
ground is not a single object, but much more varied and
disparate. The results for pLSA are summarized in the fol-
lowing confusion table. LDA exhibits a very similar behav-
ior.

True Class→ Faces Motorb Airplan
Topic 1 - Faces 95.17 0.25 0.75
Topic 2 - Motorb 4.83 99.12 2.75
Topic 3 - Airplan 0.00 0.62 96.50

It is interesting to examine the images that are confused
between the topics. Essentially the confusion arises because
the background is in common between the images, see fig-
ure 5. This motivates experiment (E) where background im-
ages are added, and there is the opportunity for the models
to discover the background as an object.

(D) Four object categories (1,2,3,4), cluttered back-
grounds. Here, we add a fourth category (Cars rear), all
with cluttered backgrounds and significant scale variations.
An interesting observation comes from varying the number
of topics,K. In the case ofK = 4, we discover the four
different categories in the dataset with very high accuracy
(see table 4). In the case ofK = 5, the car dataset splits
into two subtopics. This is because the data contains sets of
many repeated images of the same car. IncreasingK to 6
splits the motorbike data into sets with a plain background
and cluttered background similar to our manual split of the
data for experiments A and B. IncreasingK further to 7 and
8 ‘discovers’ two more sub-groups of car data containing
again other repeated images of the same/similar cars.

It is also interesting to see the visual words which are
most probable for an object, by selecting those with high
topic specific probabilityP (wi|zk). These are shown for
the pLSA model for the case ofK = 4 in figure 6.

(E) Four object categories (1,2,3,4) plus “background”
category (6). Here we add an explicit “background” cat-
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(a)

(b)

(c)

(d)

Figure 6: Two most likely words (shown by 5 examples in a row)
for four learnt topics in experiment (D): (a) Faces, (b) Motorbikes,
(c) Airplanes, (d) Cars.

egory (indoor and outdoor scenes around Caltech campus)
to our experiment D. The reason for adding these additional
images is to give the methods the opportunity of discovering
background “objects”.

The confusion tables for the three methods are shown
as images in figure 7(a). It is evident, for example, that
for both pLSA and LDA the first topic confuses faces and
backgrounds to some extent.

We now carry out further pLSA model fits withK =
6, 7. The result is very interesting: the confusion between
the four object categories decreases significantly, and in-
stead the background is treated as three separate topics, see
figure 7(b). Because the background is so varied, it is be-
ing treated as three distinct objects, roughly corresponding
to local feature-like texture, building/office-like texture and
stochastic-like texture. Examples of visual words with high
probability under these background topics/objects are given
in figure 8. This example reiterates that an image is being
described as a mixture over topics. Examining the poste-
riors, it can be seen that a typical image consisting of fore-
ground object (e.g. a motorbike) and background is now de-
scribed as a mixture of motorbike and the background topics
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Figure 7: (a) Confusion tables for pLSA, LDA and texture for
experiment (E) with 5 learned topics. Brightness indicates num-
ber. The ideal is bright down the diagonal. (b) Confusion tables
for pLSA for increasing number of topics (K=5,6,7) respectively.
Note how the background (category 5 splits into 2 and 3 topics
(for K=6 and 7 respectively) and that some amount of the confu-
sion between categories and background is removed.

(e.g. texture). We return to this point below in section 4.2.

(F) Seven object categories (1,2,3,4,5,7,8) plus “back-
ground” category (6). In our biggest experiment, we
used all our datasets with real backgrounds (adding Leop-
ards, Watch and Ketch to previous experiments). Even
though the new categories all had substantially fewer im-
ages (around 200), the results are still encouraging.

Discussion: In the experiments it was necessary to spec-
ify the number of topicsK, however Bayesian [21] or mini-
mum complexity methods [2] can be used to infer the num-
ber of topics implied by a corpus.

While designing these experiments, we grew to appre-
ciate the many difficulties in searching for good datasets.
Finding a collection of images containing objects of the
same category that is large enough (at least 200 images),
hard enough (good intra-class variation between objects),
but doable (the intra-class variation is based on appear-
ance, not semantics) is not an easy task! Dealing with
realistic backgrounds presents another set of issues. In a
full object-recognition system there should not be anything
called “background” – every object in the scene must be
explained. However, this requires enough training data to
cover each objectindependently of all the others. For ex-
ample, if all the airplanes in the dataset are pictured on tar-
macs (with no airplanes in the air, and no empty tarmacs),
then there is no way for the system to learn that these are
actually two distinct object classes. In these experiments,
we addressed these problems in two ways: (i) every attempt
was made to use datasets with varied backgrounds, (ii) a
“background” category was added, with backgrounds simi-
lar to the ones used in other categories.
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(a)

(b)

(c)

Figure 8: Two most likely words (shown by 5 examples in a row)
for the three background topics learned in experiment E: (a) topic
2,mainly local feature-like structure (b) topic 4, mainly corners
and edges coming from the office/building scenes, (c) topic 5,
mainly textured regions like grass and trees. For topic numbers
refer to figure 11(c).

Classifying unseen images: The learned topics can also
be used for classifying unseen images, a task similar to the
one in Ferguset al. [7]. In the case of pLSA, the topic spe-
cific distributionsP (w|z) are learned from a separate set of
‘training’ images. When observing a newunseen‘test’ im-
age, the document specific mixing coefficientsP (z|dtest)
are computed using the ‘fold-in’ heuristic described in [9].
In particular, the unseen image is ‘projected’ on the sim-
plex spanned by learnedP (w|z), i.e. the mixing coeffi-
cientsP (zk|dtest) are sought such that the Kullback-Leibler
divergence between the measured empirical distribution
P̃ (w|dtest) andP (w|dtest) =

∑K
k=1 P (zk|dtest)P (w|zk)

is minimized. This is achieved by running EM in a similar
manner to that used in learning, but now only the coeffi-
cientsP (zk|dtest) are updated in each M-step. The learned
P (w|z) are kept fixed.

To compare performance with Ferguset al. [7], experi-
ment E was modified such that only the ‘training’ subsets
for each category (and all background images) from [7]
were used to fit the pLSA model with 7 topics (four ob-
ject topics and three background topics). The ‘test’ images
from [7] were than ‘folded in’ as described above. In the
first test the confusion between different object categories

True Class→ Faces Motorb Airplan Cars rear
Topic 1 - Faces 99.54 0.25 1.75 0.75
Topic 2 - Motorb 0.00 96.50 0.25 0.00
Topic 3 - Airplan 0.00 1.50 97.50 0.00
Topic 4 - Cars rear 0.46 1.75 0.50 99.25

Figure 9: Confusion table for unseen test images (modified ex-
periment E). Note there is very little confusion between different
categories. See text.

Object categ. pLSA (a) pLSA (b) Ferguset al. [7]
Faces 5.3 3.3 3.6
Motorbikes 15.4 8.0 6.7
Airplanes 3.4 1.6 7.0
Cars rear* 21.4 / 11.9 16.7 / 7.0 9.7

Figure 10: Equal error rates for image classification task for pLSA
and the method of [7]. Test images of a particular category were
classified against (a) testing background images (test performed
in [7]) and (b) testing background imagesandtesting images of all
other categories. The improved performance in (b) is because our
method exhibits very little confusion between different categories.
(*) The two performance figures correspond to training on 400 /
900 background images respectively. In both cases, classification
is performed against an unseen test set of road backgrounds (as
in [7]), which was folded-in. See text for explanation.

is examined. Each test image is assigned to object topick
with maximumP (zk|dtest) (background topics are ignored
here). The confusion table is shown in figure 9.

In the second test we examine performance in classify-
ing (unseen) images against (unseen) background images.
The pLSA model is fitted to training subsets of each cat-
egory and a training subset of only 400 (out of 900) back-
ground images. Testing images of each category and testing
background images are ‘folded-in’. The mixing proportion
P (zk|dtest) for topic k across the testing imagesdtest (i.e.
a row in the landscape matrixP (z|d) in figure 1b) is then
used to produce a ROC curve for the topick. Equal error
rates for the four object topics are reported in figure 10.

Note that for Airplanes and Faces our performance is
similar to that of [7] despite the fact that our ‘training’ is
unsupervised in the sense that the identity of the object in
an image isnot known. This is in contrast to [7], where each
image is labelled with an identity of the object it contains,
i.e. about 5×400 items of supervisory data vs. one label
(the number of topics) in our case.

In the case of motorbikes we perform worse than [7]
mainly due to confusion between motorbike images con-
taining textured background and textured background topic
(similar problem is shown in figure 5). The performance on
Cars rear is poor because Car images are split between two
topics in training (a similar effect happens in experiment
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(a) (b)
Topic P (topic|image) # regions
1 Motorbikes (green) 0.07 1
2 Backg I (magenta) 0.09 1
3 Face (yellow) 0.48 128
4 Backg II (cyan) 0.17 12
5 Backg III (blue) 0.15 23
6 Cars (red) 0.03 0
7 Airplane (black) 0.00 0

(c)

Figure 11: Image as a mixture of visual topics (Experiment E) - I.
(a) Original frame. (b) Image as a mixture of a face topic (yellow)
and background topics (blue, cyan). Only elliptical regions with
topic posteriorP (z|w, d) greater than 0.8 are shown. In total 7
topics were learned for this dataset which contained (faces, motor-
bikes, airplanes, cars, and background images). The other topics
are not significantly present in the image since they mostly repre-
sent the other categories and other types of background. Table (c)
shows the mixture coefficientsP (z|d) for this particular image.
In total there are 693 elliptical regions in this image of which 165
(102 unique visual words) haveP (z|w, d) above 0.8 (those shown
in (b)).

D for K=6). This splitting can be avoided by including
more background images. In order to make results compa-
rable with [7], Cars rear images were classified against com-
pletely new background dataset containing mainly empty
roads. This dataset was not seen in the learning stage and
had to be ‘folded-in’ which makes the comparison on Cars
rear slightly unfair.

4.2. Segmentation
In this section we evaluate the image’s spatial segmentation
that have been discovered by the model fitting. As a first
thought, it is absurd that a bag of words model could possi-
bly have anything useful to say about image segmentation,
since all spatial information has been thrown away. How-
ever, the pLSA model delivers the posteriors

P (zk|wi, dj) =
P (wi|zk)P (zk|dj)∑K
l=1 P (wi|zl)P (zl|dj)

, (4)

and consequently for a word occurrence in a particular doc-
ument we can examine the probability of different topics.

Figures 11 and 12 show examples of ‘topic segmenta-
tion’ induced byP (zk|wi, dj) for the case of experiment (E)
with 7 topics. Figure 13 shows examples of topic segmenta-
tion for unseen images (modified experiment E7). In partic-
ular, we show only visual words withP (zk|wi, dj) greater

(a) (b)

Figure 12: Image as a mixture of visual topics II. For this image
P (z|d) is 0.48 (motorbikes - green), 0.01 (bg I - magenta), 0.04
(face - yellow), 0.20 (bg II - cyan), 0.14 (bg III - blue), 0.02 (cars -
red), 0.10 (airplane - black). In total there are 466 elliptical regions
in this image of which 102 (80 unique visual words) haveP (z|d)
above 0.8 (those shown in (b)).

than 0.8. There is an impressive alignment of the words
with the corresponding object areas of the image. Note the
words shown are not simply those most likely for that topic.
Rather, from (4), they have high probability of that topicin
this image. This is an example of overcoming polysemy –
the probability of the particular word depends not only on
the probability that it occurs within that topic (face, say) but
also on the probability that the face topic has for that image,
i.e. the evidence for the face topic from other regions in the
image.

There are no examples of images containing several dif-
ferent objects in the datasets we are using, so we provide a
small number of additional images. In the pLSA case we
have added these images to the dataset of experiment E and
re-fitted the model to all images. In the case of LDA, we
use the learned parameters to do prediction on the unseen
mixed-category images. An example of segmentations for
an image containing a car and a motorbike is shown in fig-
ure 14(a) and a car and a face in 14(b). The segmentations
were obtained in the same way as described above. Note
in the case of pLSA it was necessary to refit the model to
all the images (although this can be avoided [10]), however
in the case of LDA the mixture weights could be inferred
directly.

5. Conclusions
We have demonstrated that it is possible to learn visual ob-
ject classes simply by looking; in experiments (A) through
(F) we identify the object categories for each image with
the high reliabilities shown in figure 4, using a corpus of
unlabelled images. Furthermore, the visual words with the
highest posterior probabilities for each object correspond
fairly well to the spatial locations of each object. This is
rather remarkable considering our use of the bag of words
model.

We have explored an extreme approach, no spatial prop-
agation of information, and have met with surprising suc-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Motorbikes Airplanes Cars Bg I, II, IIIFaces

Figure 13: Examples of segmentation for new unseen images using pLSA. Topics were learned from a set of training images from each
category and all background images. Each new image was ‘folded in’, see text. Two examples from each category are shown: Faces
(a,b), Motorbikes (c,d), Airplanes (e,f), Cars rear (g,h). Four examples from the ETH motorbike dataset [11] are shown in (i–l). Note the
significant changes in scale and viewpoint. The color key for the seven different topics is shown at the bottom of the figure.
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(a) (b)

Figure 14: Multiple objects in an image.(a) pLSA example:Two
objects are present in this image: a motorbike (topic 1 - green )
and a car (topic 6 - red). The learned mixture coefficientsP (z|d)
are 0.41 (motorbikes - green), 0.02 (bg I - magenta), 0.16 (face -
yellow), 0.19 (bg II - cyan), 0.04 (bg III - blue), 0.14 (cars - red),
0.02 (airplane - black). In total there are 740 elliptical regions in
this image of which 95 (72 unique visual words) are shown (have
P (z|w, d) above 0.8).(b) LDA example: Two objects are present
in this image. a face (yellow) and a car (red). The learned mixing
weightsθ are 0.19 car (red), 0.07 motorbike (green), 0.16 airplane
(black), 0.14 background (blue), 0.44 face (yellow).

cess. The current work provides a foundation for spatial
inference: the posterior marginal probabilities for object
membership for each local region and each object. Already,
we have shown these probabilities to be useful for identify-
ing and localizing objects that have been discovered from
a training corpus. We expect they will also prove useful
for tasks such as combining topic discovery with spatial
inference and perceptual organization, or image retrieval.
For example, the topic vectors we have discovered may
now be applied directly as ‘semantic vectors’ for retrieval
from image databases, and we anticipate significant per-
formance improvements compared to standard approaches
such as LSA [20].
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